【題目】探索與發(fā)現(xiàn)

(1)正方形ABCD中有菱形PEFG,當(dāng)它們的對角線重合,且點(diǎn)P與點(diǎn)B重合時(如圖1),通過觀察或測量,猜想線段AECG的數(shù)量關(guān)系,并證明你的猜想;

(2)當(dāng)(1)中的菱形PEFG沿著正方形ABCD的對角線平移到如圖2的位置時,猜想線段AECG的數(shù)量關(guān)系,只寫出猜想不需證明.

【答案】(1)結(jié)論:AE=CG.理由見解析;(2)結(jié)論不變,AE=CG.

【解析】1)結(jié)論AE=CG.只要證明△ABE≌△CBG,即可解決問題.

2)結(jié)論不變,AE=CG.如圖2,連接BG、BE先證明△BPE≌△BPG再證明△ABE≌△CBG即可.

1)結(jié)論AE=CG.理由如下

如圖1,

∵四邊形ABCD是正方形,AB=CB,ABD=CBD,

∵四邊形PEFG是菱形,BE=BG,EBD=GBD∴∠ABE=CBG,

在△ABE和△CBG

,∴△ABE≌△CBGAE=CG

2)結(jié)論不變,AE=CG.理由如下

如圖2,連接BGBE

∵四邊形PEFG是菱形,PE=PGFPE=FPG,∴∠BPE=BPG,

在△BPE和△BPG

,∴△BPE≌△BPG,BE=BG,PBE=PBG,

∵∠ABD=CBD,∴∠ABE=CBG,

在△ABE和△CBG,

,∴△ABE≌△CBGAE=CG

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.

(1)如圖(1),若∠AOC=,求∠DOE的度數(shù);

(2)如圖(2),將∠COD繞頂點(diǎn)O旋轉(zhuǎn),且保持射線OC在直線AB上方,在整個旋轉(zhuǎn)過程中,當(dāng)∠AOC的度數(shù)是多少時,∠COE=2DOB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識,回答下列問題:

(1)小明總共剪開了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補(bǔ)全.

(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點(diǎn),若CF=2,F(xiàn)D=4,則BC的長為(
A.6
B.2
C.4
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為4的等邊三角形,D為AB邊的中點(diǎn),以CD為直徑畫圓,則圖中陰影部分的面積為(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知凸四邊形ABCD中,∠A=∠C=90°.

(1)如圖1,若DE平分∠ADC,BF平分∠ABC的鄰補(bǔ)角,判斷DEBF位置關(guān)系并證明.

(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補(bǔ)角,判斷DEBF位置關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長線交于點(diǎn)D,DE⊥AD且與AC的延長線交于點(diǎn)E.
(1)求證:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=2,∠B=30°,P是BC邊上一個動點(diǎn),過點(diǎn)P作PD⊥BC,交△ABC的AB邊于點(diǎn)D.若設(shè)PD為x,△BPD的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠BAC=90°,DAC的中點(diǎn),CEBD于點(diǎn)E,交BA的延長線于點(diǎn)F.若BF=12,則△FBC的面積為( )

A. 40 B. 46 C. 48 D. 50

查看答案和解析>>

同步練習(xí)冊答案