如圖1,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長(zhǎng)線交AC于點(diǎn)F,且BF⊥AC,垂足為F,∠BAC=45°,原題設(shè)其它條件不變.求證:△AEF≌△BCF.
考點(diǎn):
全等三角形的判定與性質(zhì);等腰三角形的性質(zhì).
專題:
證明題.
分析:
(1)根據(jù)等腰三角形三線合一的性質(zhì)可得∠BAE=∠EAC,然后利用“邊角邊”證明△ABE和△ACE全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等證明即可;
(2)先判定△ABF為等腰直角三角形,再根據(jù)等腰直角三角形的兩直角邊相等可得AF=BF,再根據(jù)同角的余角相等求出∠EAF=∠CBF,然后利用“角邊角”證明△AEF和△BCF全等即可.
解答:
證明:(1)∵AB=AC,D是BC的中點(diǎn),
∴∠BAE=∠EAC,
在△ABE和△ACE中,,
∴△ABE≌△ACE(SAS),
∴BE=CE;
(2)∵∠BAC=45°,BF⊥AF,
∴△ABF為等腰直角三角形,
∴AF=BF,
∵AB=AC,點(diǎn)D是BC的中點(diǎn),
∴AD⊥BC,
∴∠EAF+∠C=90°,
∵BF⊥AC,
∴∠CBF+∠C=90°,
∴∠EAF=∠CBF,
在△AEF和△BCF中,,
∴△AEF≌△BCF(ASA).
點(diǎn)評(píng):
本題考查了全等三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),等腰直角三角形的判定與性質(zhì),同角的余角相等的性質(zhì),是基礎(chǔ)題,熟記三角形全等的判定方法與各性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
PE |
CE |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
BC2+CD2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
DE |
BD |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com