(2007•臨沂)如圖,在△ABC中,AB=2,AC=1,以AB為直徑的圓與AC相切,與邊BC交于點D,則AD的長為( )

A.
B.
C.
D.
【答案】分析:根據(jù)以AB為直徑的圓與AC相切,可知∠CAB=∠ADB=90°,即可利用勾股定理求得BC=,再利用三角形的面積求得AD==
解答:解:∵AB為直徑的圓與AC相切,
∴∠CAB=∠ADB=90°,
∵AB=2,AC=1,
∴BC=,
∵AD•BC=AC•AB,
∴AD==
故選A.
點評:本題利用了直徑所對圓周角是直角,切線的概念,直角三角形的面積公式求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•臨沂)如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O(shè)、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標(biāo);
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年新人教版中考數(shù)學(xué)模擬試卷(1)(解析版) 題型:解答題

(2007•臨沂)如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O(shè)、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標(biāo);
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省泰安市寧陽縣中考數(shù)學(xué)模擬試卷(12)(解析版) 題型:解答題

(2007•臨沂)如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O(shè)、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標(biāo);
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市數(shù)學(xué)中考精品試卷之一(解析版) 題型:解答題

(2007•臨沂)如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O(shè)、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標(biāo);
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河北省中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:選擇題

(2007•臨沂)如圖,某廠有許多形狀為直角梯形的鐵皮邊角料,為節(jié)約資源,現(xiàn)要按圖中所示的方法從這些邊角料上截取矩形(陰影部分)片備用,當(dāng)截取的矩形面積最大時,矩形兩邊長x、y應(yīng)分別為( )

A.x=10,y=14
B.x=14,y=10
C.x=12,y=15
D.x=15,y=12

查看答案和解析>>

同步練習(xí)冊答案