(2012•臺(tái)灣)圖1的長(zhǎng)方形ABCD中,E點(diǎn)在AD上,且BE=2AE.今分別以BE、CE為折線,將A、D向BC的方向折過(guò)去,圖2為對(duì)折后A、B、C、D、E五點(diǎn)均在同一平面上的位置圖.若圖2中,∠AED=15°,則∠BCE的度數(shù)為何?( 。
分析:由題意得:∵BE=2AE=2A′E,∠A=∠A′=90°,即可得△ABE、△A′BE皆為30°、60°、90° 的三角形,然后可求得∠AED′的度數(shù),又由∠AED=15°,即可求得∠DED′的度數(shù),繼而求得∠BCE=∠2的度數(shù).
解答:解:根據(jù)題意得:∵BE=2AE=2A′E,∠A=∠A′=90°,
∴△ABE、△A′BE皆為30°、60°、90° 的三角形,
∴∠1=∠AEB=60°,
∴∠AED′=180°-∠1-∠AEB=180°-60°-60°=60°,
∴∠DED′=∠AED+∠AED′=15°+60°=75°,
∴∠2=
1
2
∠DED′=37.5°,
∵A′D′∥BC,
∴∠BCE=∠2=37.5°.
故選D.
點(diǎn)評(píng):此題考查了折疊的性質(zhì)、矩形的性質(zhì)以及含30°角的直角三角形的性質(zhì).此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意折疊中的對(duì)應(yīng)關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)灣)如圖,一圓桌周?chē)?0個(gè)箱子,依順時(shí)針?lè)较蚓幪?hào)1~20.小明在1號(hào)箱子中丟入一顆紅球后,沿著圓桌依順時(shí)針?lè)较蛐凶,每?jīng)過(guò)一個(gè)箱子就依下列規(guī)則丟入一顆球:
(1)若前一個(gè)箱子丟紅球,經(jīng)過(guò)的箱子就丟綠球.
(2)若前一個(gè)箱子丟綠球,經(jīng)過(guò)的箱子就丟白球.
(3)若前一個(gè)箱子丟白球,經(jīng)過(guò)的箱子就丟紅球.
已知他沿著圓桌走了100圈,求4號(hào)箱內(nèi)有幾顆紅球?( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)灣)小明原有300元,如圖記錄了他今天所有支出,其中餅干支出的金額被涂黑.若每包餅干的售價(jià)為13元,則小明可能剩下多少元?( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)灣)如圖是利用短除法求出三數(shù)8、12、18的最大公因子的過(guò)程.利用短除法,求出這三數(shù)的最小公倍數(shù)為何?( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)灣)如圖,正六邊形ABCDEF的邊長(zhǎng)為1,連接AC、BE、DF,求圖中灰色四邊形的周長(zhǎng)為何?( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案