已知,如圖,在Rt△ABC中,CD是斜邊上的中線,DE⊥AB交BC于點F,交AC的延長線于點E.
(1)△ADE∽△FDB嗎?為什么?
(2)你能推出結(jié)論CD2=DE•DF嗎?請試一試.

證明:(1)∵DE⊥AB,BC⊥AE,
∴∠A+∠B=90°,∠A+∠E=90°,
∴∠E=∠B,
∴△ADE∽△FDB(AA);

(2)∵CD為Rt△ABC的中線,
∴CD=DB=AD,
∴∠DCB=∠DBC,
又∠E=∠B,
∴∠BCD=∠E,
又∠CDF是公共角,
∴△CFD∽△ECD,
=,即CD2=DE•DF.
分析:(1)根據(jù)題意,得∠A+∠B=90°,∠A+∠E=90°,則∠E=∠B,易證△ADE∽△FDB;
(2)由Rt△ABC中,CD是斜邊上的中線,得CD=DB,則∠DCB=∠DBC,又∠E=∠B,所以∠BCD=∠E,又∠CDF是公共角,所以△CFD∽△ECD,即可得出;
點評:本題主要考查了直角三角形和相似三角形的判定與性質(zhì),掌握直角三角形斜邊上的中線等于斜邊的一半,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,過點B作BD∥AC,且BD=2AC,連接AD.試判斷△ABD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•陜西)已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,OD∥AB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•豐臺區(qū)一模)已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連結(jié)DE.
(1)求證:DE與⊙O相切;
(2)連結(jié)OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代數(shù)式表示AE;
(3)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(4)設(shè)四邊形DECF的面積為S,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜邊AB上的高CD.

查看答案和解析>>

同步練習(xí)冊答案