已知整數(shù)m滿足6<m<20,如果關于x的一元二次方程mx2-(2m-1)x+m-2=0有有理根,求m的值及方程的根.
根據(jù)題意得,m≠0,若方程有有理根,則△為完全平方數(shù).
∵△=(2m-1)2-4m×(m-2)=4m+1,
又∵整數(shù)m滿足6<m<20,
∴4m+1=49,即m=12.
則原方程變?yōu)椋?2x2-23x+10=0,
∴x=
23±
49
2×12
=
23±7
24
,
∴x1=
2
3
,x2=
5
4

故m=12,此時方程的解為x1=
2
3
,x2=
5
4
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、已知整數(shù)x滿足0≤x≤5,y1=x+2,y2=-2x+5,對任意一個x,y1,y2中的較大值用m表示,則m的最小值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知整數(shù)x滿足-5≤x≤5,y1=2x+1,y2=-x+4對任意一個x,m都取y1,y2中的較小值,則m的最大值是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知整數(shù)a滿足(
18
)-a=80×4-3×23
,試求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知整數(shù)x滿足:|x-
1
3
|<a
,(a為正整數(shù))利用數(shù)軸表示|x-
1
3
|<a
,解決下列問題:
(1)當a=1時,求所有的x的值.
(2)當a=2時,求所有的x的值.
(3)對于a的任意的值,求所有的x值的和與a的商.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解答下列問題
已知整數(shù)x滿足:|x-
13
|<a(a為正整數(shù))
(1)請利用數(shù)軸分別求當a=1和a=2時的所有滿足條件的x的值;
(2)對于任意的正整數(shù)a值,請求出所有滿足條件的x的和與a的商.

查看答案和解析>>

同步練習冊答案