【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)OAB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC、AB于點(diǎn)E、F.

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=,BF=2,求⊙O的半徑.

【答案】(1)線BC與⊙O的位置關(guān)系是相切,理由見解析;(2)2.

【解析】

(1)連接OD,證明ODAC,即可證得ODB=90°,從而證得BC是圓的切線;

(2)在直角三角形OBD中,設(shè)OF=OD=R,利用勾股定理列出關(guān)于R的方程,求出方程的解得到R的值,即為圓的半徑.

解:(1)線BC與⊙O的位置關(guān)系是相切,

理由是:連接OD,

∵OA=OD,

∴∠OAD=∠ODA,

∵AD平分∠CAB,

∴∠OAD=∠CAD,

∴∠ODA=∠CAD,

∴OD∥AC,

∵∠C=90°,

∴∠ODB=90°,即OD⊥BC,

∵OD為半徑,

∴線BC與⊙O的位置關(guān)系是相切;

(2)設(shè)⊙O的半徑為R,

則OD=OF=R,

在Rt△BDO中,由勾股定理得:OB2=BD2+OD2

即(R+2)2=(2+R2,

解得:R=2,

即⊙O的半徑是2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AC=DC,ACDC,直線MN經(jīng)過點(diǎn)A,作DBMN,垂足為B,連接CB.

(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;

(2)①如圖1,猜想AB,BDBC之間的數(shù)量關(guān)系,并說明理由;

②如圖2,直接寫出AB,BDBC之間的數(shù)量關(guān)系;

(3)MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時(shí),直接寫出BC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB2,AMBN是它的兩條切線,DEOE,交AMD,交BNC.設(shè)ADxBCy

(1)求證:AMBN;

(2)y關(guān)于x的關(guān)系式;

(3)求四邊形ABCD的面積S,并證明:S≥2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山區(qū)某教學(xué)樓后面緊鄰著一個(gè)土坡,坡面BC平行于地面AD,斜坡AB的坡比為i=1:,且AB=26米,為了防止山體滑坡,保障安全,學(xué)校決定對(duì)該土坡進(jìn)行改造,經(jīng)地質(zhì)人員勘測(cè),當(dāng)坡角不超過53°時(shí),可確保山體不滑坡;

(1)求改造前坡頂與地面的距離BE的長(zhǎng);

(2)為了消除安全隱患,學(xué)校計(jì)劃將斜坡AB改造成AF(如圖所示),那么BF至少是多少米?(結(jié)果精確到1米)

【參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,點(diǎn)是對(duì)角線的中點(diǎn),點(diǎn)上一點(diǎn),連接,且,點(diǎn)中點(diǎn),,連接,延長(zhǎng)于點(diǎn)

1)若,求的長(zhǎng)度;

2)若,求證

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,兩條中線BE、CD相交于點(diǎn)O,則SADE:SCOE=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一張圓形紙片,小芳進(jìn)行了如下連續(xù)操作:

(1)將圓形紙片左右對(duì)折,折痕為AB,如圖(2)所示.

(2)將圓形紙片上下折疊,使A、B兩點(diǎn)重合,折痕CD與AB相交于M,如圖(3)所示.

(3)將圓形紙片沿EF折疊,使B、M兩點(diǎn)重合,折痕EF與AB相交于N,如圖(4)所示.

(4)連結(jié)AE、AF,如圖(5)所示.

經(jīng)過以上操作小芳得到了以下結(jié)論:

①CD∥EF;②四邊形MEBF是菱形;③△AEF為等邊三角形;④,

以上結(jié)論正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、2、34,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過游戲來決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹狀圖或列表法求出小穎參加比賽的概率;

2)你認(rèn)為該游戲公平嗎?請(qǐng)說明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】次函數(shù) y=kx+b與反數(shù) y=x0Am,6B3,n點(diǎn)

1求一次函數(shù)的解析式;

2AOB的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案