如圖,在邊長(zhǎng)為c的正方形中,有四個(gè)斜邊為c的全等直角三角形,已知其直角邊長(zhǎng)為a,b.利用這個(gè)圖試說(shuō)明勾股定理.

解:∵大正方形面積為:c2,直角三角形面積為ab,小正方形面積為:(a-b)2
所以c2=4×ab+(a-b)2,
即c2=a2+b2,
在每個(gè)直角邊為a、b而斜邊為c的直角三角形中,這個(gè)式子就是勾股定理.
分析:根據(jù)大正方形面積=四個(gè)相同直角三角形面積+小正方形面積,得c2=4×ab+(a-b)2即得c2=a2+b2,在每個(gè)直角邊為a、b而斜邊為c的直角三角形中,這個(gè)式子就是勾股定理.
點(diǎn)評(píng):本題主要考查了勾股定理的證明,要認(rèn)真理解勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,如果邊長(zhǎng)為1的正六邊形ABCDEF繞著頂點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后與正六邊形AGHMNP重合,那么點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)
 
,點(diǎn)E在整個(gè)旋轉(zhuǎn)過(guò)程中,所經(jīng)過(guò)的路徑長(zhǎng)為
 
 (結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在邊長(zhǎng)為a的正△ABC中,分別以A,B,C點(diǎn)為圓心,
1
2
a
長(zhǎng)為半徑作
DE
,
EF
,
FD
,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將邊長(zhǎng)為3的正六邊形A1A2A3A4A5A6,在直線l上由圖1的位置按順時(shí)針?lè)较蛳蛴易鳠o(wú)滑動(dòng)滾動(dòng),當(dāng)A1第一次滾動(dòng)到圖2位置時(shí),頂點(diǎn)A1所經(jīng)過(guò)的路徑的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在邊長(zhǎng)為a的正△ABC中,分別以A,B,C點(diǎn)為圓心,數(shù)學(xué)公式長(zhǎng)為半徑作數(shù)學(xué)公式,數(shù)學(xué)公式,數(shù)學(xué)公式,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:初三數(shù)學(xué)圓及旋轉(zhuǎn)題庫(kù) 第8講:弧長(zhǎng)和扇形面積(解析版) 題型:解答題

已知:如圖,在邊長(zhǎng)為a的正△ABC中,分別以A,B,C點(diǎn)為圓心,長(zhǎng)為半徑作,,,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案