已知:如圖所示,在△ABC中,∠ACB=90°,CE⊥AB于點E,AF平分∠CAB交CE于點F,AD=AC,DF的延長線交AC于點G,
求證:(1)CF=DF (2)GD∥BC.
分析:(1)根據(jù)角平分線得到∠CAF=∠DAF,則可根據(jù)“SAS”判斷△ACF≌△ADF,所以CF=DF;
(2)由△ACF≌△ADF得到∠ACF=∠ADF,再根據(jù)同角的余角相等得到∠ACE=∠B,則∠ADF=∠B,根據(jù)根據(jù)平行線的判定方法即可得到GD∥BC.
解答:證明:(1)∵AF平分∠CAB,
∴∠CAF=∠DAF,
在△ACF和△ADF中
AC=AD
∠CAE=∠DAF
AF=AF

∴△ACF≌△ADF (SAS),
∴CF=DF;

(2)∵△ACF≌△ADF,
∴∠ACF=∠ADF,
∵∠ACB=90°,CE⊥AB,
∴∠ACE+∠BCE=90°,∠BCE+∠B=90°,
∴∠ACE=∠B,
∴∠ADF=∠B,
∴GD∥BC.
點評:本題考查了全等三角形的判定與性質(zhì):判斷三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應角相等,對應邊相等.也考查了平行線的判定.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀下述說明過程,討論完成下列問題:
已知:如圖所示,在?ABCD中,∠A的平分線與BC相交于點E,∠B的平分線與AD相交于點F,AE與BF相交于點O,試說明四邊形ABEF是菱形.
證明:(1)∵四邊形ABCD是平行四邊形,
(2)∴AD∥BC.
(3)∴∠ABE+∠BAF=180°.
(4)∵AE、BF分別平分∠BAF、∠ABE,
(5)∴∠1=∠2=
1
2
∠BAF,∠3=∠4=
1
2
∠ABE.
(6)∴∠1+∠3=
1
2
(∠BAF+∠ABE)=
1
2
×180°=90°.
(7)∴∠AOB=90°.
(8)∴AE⊥BF.
(9)∴四邊形ABEF是菱形.

問:①上述說明過程是否正確?
答:
 

②如果錯誤,指出在第
 
步到第
 
步推理錯誤,應在第
 
步后添加如下證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖所示,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖所示,在矩形ABCD中,E為DC上的一點,BF⊥AE于點F,且BF=BC,求證:AE=AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖所示,在△ABC中,∠C=90°,BC=5cm,AC=7cm.兩個動點P、Q分別從B、C兩點精英家教網(wǎng)同時出發(fā),其中點P以1厘米/秒的速度沿著線段BC向點C運動,點Q以2厘米/秒的速度沿著線段CA向點A運動.
(1)P、Q兩點在運動過程中,經(jīng)過幾秒后,△PCQ的面積等于4厘米2?經(jīng)過幾秒后PQ的長度等于5厘米?
(2)在P、Q兩點在運動過程中,四邊形ABPQ的面積能否等于11厘米2?試說明理由.
(3)經(jīng)過幾秒時以C、P、Q為頂點的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖所示,在平面直角坐標系中,函數(shù)y=
mx
(x>0,m是常數(shù))的圖象經(jīng)過點A(1,4)、點B(a,b),其中a>1,直線AB交y軸于點E.過點A作x軸的垂線,垂足為C,過點B作y軸的垂線,垂足為D,AC與BD相交于精英家教網(wǎng)點M,連接DC.
(1)求m的值;
(2)求證:四邊形ACDE為平行四邊形;
(3)若AB=CD,求直線AB的函數(shù)解析式.

查看答案和解析>>

同步練習冊答案