當(dāng)x=________,y=________時,最簡二次根式能夠合并.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:廣東省汕頭市金平區(qū)2011屆九年級畢業(yè)模擬考試數(shù)學(xué)試題 題型:044

閱讀材料并解答問題:

與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,…,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.(結(jié)果可用三角函數(shù)表示)

如圖①,當(dāng)n=3時,設(shè)AB切圓O于點(diǎn)C,連結(jié)OC,OA,OB,

∴OC⊥AB,OA=OB,∴∠AOC=AOB,AB=2BC.

在Rt△AOC中,,OC=r,

∴AC=r·tan60°,AB=2r·tan60°,

∴S△OAB·r·2rtan60°=r2tan60°,

∴S正三角形=3S△OAB=3r2·tan60°.

(1)如圖②,當(dāng)n=4時,仿照(1)中的方法和過程可求得:S正四邊形=________;

(2)如圖③,當(dāng)n=5時,仿照(1)中的方法和過程S正五邊形;

(3)如圖④,根據(jù)以上探索過程,請直接寫出S正n邊形________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課堂上,徐老師出示一道試題:

    如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AM=MN.

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補(bǔ)充完整.

    證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.

    ∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

    又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

                                            

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當(dāng)∠AnMnNn    °時,結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)

    

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點(diǎn)B、C)上任意一點(diǎn),PBC延長線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AMMN

    

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補(bǔ)充完整.

證明:在AB上截取EAMC,連結(jié)EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABC,EAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵_(dá)_______________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當(dāng)∠AnMnNn    °時,結(jié)論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省徐州市中考模擬數(shù)學(xué)試卷(B卷)(帶解析) 題型:填空題

如果記y==f(x),并且f(1)表示當(dāng)x=1時y的值,即f(1)=;f()表示當(dāng)x=時y的值,即f()=;那么f(1)+f(2)+f()+f(3)+f()+…+f(2013)+f()=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆浙江臺州豪佳中學(xué)八年級(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀理解:對于任意正實(shí)數(shù)a、b,∵≥0,∴≥0,

,只有當(dāng)a=b時,等號成立.

結(jié)論:在(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時,a+b有最小值

(1)根據(jù)上述內(nèi)容,回答下列問題:現(xiàn)要制作一個長方形(或正方形),使鏡框四周圍成的面積為4,請設(shè)計出一種方案,使鏡框的周長最小。

設(shè)鏡框的一邊長為m(m>0),另一邊的為,考慮何時時周長最小。

∵m>0, (定值),由以上結(jié)論可得:

只有當(dāng)m=       時,鏡框周長有最小值是       ;

(2)探索應(yīng)用:如圖,已知A(-3,0),B(0,-4),P為雙曲線(x>0)上的任意一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說明此時△OAB與△OCD的關(guān)系.

 

查看答案和解析>>

同步練習(xí)冊答案