設(shè)拋物線x軸交于兩個(gè)不同的點(diǎn)A(-1,0)、Bm,0),與y軸交于點(diǎn)C.且∠ACB=90°.

(1)求m的值;

(2)求拋物線的解析式,并驗(yàn)證點(diǎn)D(1,-3 )是否在拋物線上;

(3)已知過點(diǎn)A的直線交拋物線于另一點(diǎn)E. 問:在x軸上是否存在點(diǎn)P,使以點(diǎn)P、B、D為頂點(diǎn)的三角形與△AEB相似?若存在,請(qǐng)求出所有符合要求的點(diǎn)P的坐標(biāo). 若不存在,請(qǐng)說明理由.

 


解:(1)令x=0,得y=-2   ∴C(0,-2)

∵∠ACB=90°,COAB ,∴△AOC ∽△COB ,∴OA?OB=OC2

OB       ∴m=4    

(2)將A(-1,0),B(4,0)代入,解得

∴拋物線的解析式為

當(dāng)x=1時(shí),=-3,∴點(diǎn)D(1,-3)在拋物線上。(3)由    得   ,∴E(6,7)

EEHx軸于H,則H(6,0),

AH=EH=7      ∴∠EAH=45°

DFx軸于F,則F(1,0)

BF=DF=3         ∴∠DBF=45°

∴∠EAH=∠DBF=45°

∴∠DBH=135°,90°<∠EBA<135°

則點(diǎn)P只能在點(diǎn)B的左側(cè),有以下兩種情況:

①若△DBP1∽△EAB,則,∴

,∴

②若△∽△BAE,則,∴

   ∴

綜合①、②,得點(diǎn)P的坐標(biāo)為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)拋物線與x軸交于兩個(gè)不同的點(diǎn)A(一1,0)、B(m,0),與y軸交于點(diǎn)C.且∠ACB=90°.

(1)求m的值和拋物線的解析式;

(2)已知點(diǎn)D(1,n )在拋物線上,過點(diǎn)A的直線交拋物線于另一點(diǎn)E.若點(diǎn)P在x軸上,以點(diǎn)P、B、D為頂點(diǎn)的三角形與△AEB相似,求點(diǎn)P的坐標(biāo).

(3)在(2)的條件下,△BDP的外接圓半徑等于________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)

設(shè)拋物線與X軸交于兩不同的點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸的交點(diǎn)為點(diǎn)C(0,-2),且∠ACB=900

1.(1)求m的值和該拋物線的解析式;

2.(2)若點(diǎn)D為該拋物線上的一點(diǎn),且橫坐標(biāo)為1,點(diǎn)E為過A點(diǎn)的直線y=x+1與該拋物線的另一交點(diǎn).在X軸上是否存在點(diǎn)P,使得以P、B、D為頂點(diǎn)的三角形與△AEB相似,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

3.(3)連結(jié)AC、BC,矩形FGHQ的一邊FG在線段AB上,頂點(diǎn)H、Q分別在線段AC、BC上,若設(shè)F點(diǎn)坐標(biāo)為(t,0),矩形FGHQ的面積為S,當(dāng)S取最大值時(shí),連接FH并延長至點(diǎn)M,使HM=k·FH,若點(diǎn)M不在該拋物線上,求k的取值范圍.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省成都武侯區(qū)中考模擬試題數(shù)學(xué)卷 題型:填空題

(本題滿分12分)
設(shè)拋物線與X軸交于兩不同的點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸的交點(diǎn)為點(diǎn)C(0,-2),且∠ACB=900

【小題1】(1)求m的值和該拋物線的解析式;
【小題2】(2)若點(diǎn)D為該拋物線上的一點(diǎn),且橫坐標(biāo)為1,點(diǎn)E為過A點(diǎn)的直線y=x+1與該拋物線的另一交點(diǎn).在X軸上是否存在點(diǎn)P,使得以P、B、D為頂點(diǎn)的三角形與△AEB相似,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
【小題3】(3)連結(jié)AC、BC,矩形FGHQ的一邊FG在線段AB上,頂點(diǎn)H、Q分別在線段AC、BC上,若設(shè)F點(diǎn)坐標(biāo)為(t,0),矩形FGHQ的面積為S,當(dāng)S取最大值時(shí),連接FH并延長至點(diǎn)M,使HM=k·FH,若點(diǎn)M不在該拋物線上,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省考模擬試題數(shù)學(xué)卷 題型:填空題

(本題滿分12分)

設(shè)拋物線與X軸交于兩不同的點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸的交點(diǎn)為點(diǎn)C(0,-2),且∠ACB=900

1.(1)求m的值和該拋物線的解析式;

2.(2)若點(diǎn)D為該拋物線上的一點(diǎn),且橫坐標(biāo)為1,點(diǎn)E為過A點(diǎn)的直線y=x+1與該拋物線的另一交點(diǎn).在X軸上是否存在點(diǎn)P,使得以P、B、D為頂點(diǎn)的三角形與△AEB相似,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

3.(3)連結(jié)AC、BC,矩形FGHQ的一邊FG在線段AB上,頂點(diǎn)H、Q分別在線段AC、BC上,若設(shè)F點(diǎn)坐標(biāo)為(t,0),矩形FGHQ的面積為S,當(dāng)S取最大值時(shí),連接FH并延長至點(diǎn)M,使HM=k·FH,若點(diǎn)M不在該拋物線上,求k的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案