已知A2×(-3x2y3)=-12x6y5,求單項(xiàng)式A.

解:由題意得,A2=-12x6y5÷(-3x2y3)=4x4y2,
故可得單項(xiàng)式A為:±2x2y.
分析:根據(jù)整式的除法運(yùn)算,求出A2,繼而得到單項(xiàng)式A.
點(diǎn)評(píng):本題考查了整式的除法,解答本題的關(guān)鍵是掌握單項(xiàng)式的除法運(yùn)算法則,得出A2的表達(dá)式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=-3x2-(2c-b)x+a2,其中a、b、c是一個(gè)直角三角形的三邊的長(zhǎng),且a<b<c,又知這個(gè)三角形兩銳角的正弦值分別是方程25x2-35x+12=0的兩個(gè)根.
(1)求a:b:c;
(2)設(shè)這條拋物線與x軸的左、右交點(diǎn)分別是M、N,與y軸的交點(diǎn)為T,頂點(diǎn)為P,求△MPT的面積(用只含a的代數(shù)式表示);
(3)在(2)的條件下,如果△MPT的面積為9,問拋物線上是否存在異于點(diǎn)P的點(diǎn)Q,使得△QMT的面積與△MPT的面積相等?如果存在,請(qǐng)求出點(diǎn)Q的坐標(biāo),如果不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)或求值:
(1)3x2+2x-5x2+3x;
(2)5abc-2a2b-[3abc-3(4ab2+a2b)];
(3)當(dāng)x=-3時(shí),求3x2-2(2x2-x+1)+4(-3+x-x2)的值;
(4)已知a2+b2=6,ab=-2,求代數(shù)式(4a2+3ab-b2)-(7a2-5ab+2b2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

利用因式分解求值
(1)已知2x-y=
13
,xy=2,求2x4y3-x3y4的值;
(2)已知x2+4x-4的值為0,求3x2+12x-5的值;
(3)已知a2+b2-4a+6b+13=0,求a+b的值;
(4)已知a、b互為相反數(shù),且(a+4)2-(b+4)2=16,求4a2-b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年四川省成都市中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

如圖,已知拋物線y=-3x2-(2c-b)x+a2,其中a、b、c是一個(gè)直角三角形的三邊的長(zhǎng),且a<b<c,又知這個(gè)三角形兩銳角的正弦值分別是方程25x2-35x+12=0的兩個(gè)根.
(1)求a:b:c;
(2)設(shè)這條拋物線與x軸的左、右交點(diǎn)分別是M、N,與y軸的交點(diǎn)為T,頂點(diǎn)為P,求△MPT的面積(用只含a的代數(shù)式表示);
(3)在(2)的條件下,如果△MPT的面積為9,問拋物線上是否存在異于點(diǎn)P的點(diǎn)Q,使得△QMT的面積與△MPT的面積相等?如果存在,請(qǐng)求出點(diǎn)Q的坐標(biāo),如果不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年四川省成都市青羊區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,已知拋物線y=-3x2-(2c-b)x+a2,其中a、b、c是一個(gè)直角三角形的三邊的長(zhǎng),且a<b<c,又知這個(gè)三角形兩銳角的正弦值分別是方程25x2-35x+12=0的兩個(gè)根.
(1)求a:b:c;
(2)設(shè)這條拋物線與x軸的左、右交點(diǎn)分別是M、N,與y軸的交點(diǎn)為T,頂點(diǎn)為P,求△MPT的面積(用只含a的代數(shù)式表示);
(3)在(2)的條件下,如果△MPT的面積為9,問拋物線上是否存在異于點(diǎn)P的點(diǎn)Q,使得△QMT的面積與△MPT的面積相等?如果存在,請(qǐng)求出點(diǎn)Q的坐標(biāo),如果不存在請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案