如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)C和D,在C、D之間有一點(diǎn)P,如果P點(diǎn)在C、D之間運(yùn)動時(shí),問∠PAC,∠APB,∠PBD之間的關(guān)系是否發(fā)生變化.若點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動時(shí)(P點(diǎn)與點(diǎn)C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
.
∠APB=∠PBD-∠PAC或∠APB=∠PAC-∠PBD
解析試題分析:解:若P點(diǎn)在C、D之間運(yùn)動時(shí),則有∠APB=∠PAC+∠PBD.理由是:如圖4,過點(diǎn)P作PE∥l1,則∠APE=∠PAC,又因?yàn)閘1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.
若點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動時(shí)(P點(diǎn)與點(diǎn)C、D不重合),則有兩種情形:
(1)如圖1,有結(jié)論:∠APB=∠PBD-∠PAC.理由是:過點(diǎn)P作PE∥l1,則∠APE=∠PAC,又因?yàn)閘1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APB=∠BAE+∠APE,即∠APB=∠PBD-∠PAC.
(2)如圖2,有結(jié)論:∠APB=∠PAC-∠PBD.理由是:過點(diǎn)P作PE∥l2,則∠BPE=∠PBD,又因?yàn)閘1∥l2,所以PE∥l1,所以∠APE=∠PAC,所以∠APB=∠APE+∠BPE,即∠APB=∠PAC+∠PBD.
考點(diǎn):幾何動點(diǎn)綜合題
點(diǎn)評:本題難度較大,主要考查學(xué)生結(jié)合平行線性質(zhì)及動點(diǎn)性質(zhì)綜合運(yùn)用解題能力,動點(diǎn)為中考幾何大題常考題型,要求學(xué)生注意培養(yǎng)數(shù)形結(jié)合思想,靈活運(yùn)用到考試中去。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com