【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,如果點(diǎn)P從點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為1cm/s,連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<4).
(1)當(dāng)t為何值時(shí),PQ∥BC;
(2)是否存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由;
(3)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當(dāng)四邊形PQP′C為菱形時(shí),求t的值.
【答案】(1)當(dāng)t=秒,PQ∥BC;(2)不存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分;(3)當(dāng)四邊形PQP'C為菱形時(shí),t的值為秒.
【解析】
(1)先根據(jù)勾股定理求得AB=5,由運(yùn)動(dòng)知,BP=t,得出AP=5﹣t,AQ=t,再得出,代入建立方程即可得出結(jié)論;
(2)先求出S△AQPS△ABC,再求出S△ABC=6,進(jìn)而的粗S△AQP=3,再表示出PG(5﹣t),利用S△AQPt2t=3,建立方程,即可得出結(jié)論;
(3)先判斷出PE⊥AC,QE=EC,再判斷出△APE∽△ABC,進(jìn)而得出AEt+4,QE=AE﹣AQt+4,建立方程即可得出結(jié)論.
在Rt△ABC中,AC=4,BC=3,根據(jù)勾股定理得:AB=5,
由運(yùn)動(dòng)知,BP=t,
∴AP=5﹣t,AQ=t.
∵PQ∥BC,
∴,
∴,
∴t,
∴當(dāng)t秒,PQ∥BC;
(2)假設(shè)存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分,
∴S△AQPS△ABC.
∵S△ABCACBC=6,
∴S△AQP=3,過點(diǎn)P作PG⊥AC于G.
∵PG∥BC,
∴,
∴,
∴PG(5﹣t),
∴S△AQPAQPGt(5﹣t)t2t,
∴t2t=3,即:t2﹣5t+10=0.
∵△=25﹣40=﹣15<0,
∴此方程無實(shí)數(shù)根,
∴不存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分;
(3)如圖乙.連接PP',PP'交QC于E,當(dāng)四邊形PQP'C為菱形時(shí),PE垂直平分QC,即:PE⊥AC,QE=EC.
∵∠ACB=90°,
∴PE∥BC,
∴△APE∽△ABC,
∴,
∴AEt+4,QE=AE﹣AQt+4﹣tt+4,
∴t+4t+2,
∴t.
∵04,
∴當(dāng)四邊形PQP'C為菱形時(shí),t的值為秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一直角三角形兩直角邊分別為6、8,在其外部拼上一個(gè)以8為直角邊的直角三角形,此時(shí)變成等腰三角形,則該等腰三角形的周長是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量豎直旗桿AB的高度,某綜合實(shí)踐小組在地面D處豎直放置標(biāo)桿CD,并在地面上水平放置個(gè)平面鏡E,使得B,E,D在同一水平線上,如圖所示.該小組在標(biāo)桿的F處通過平面鏡E恰好觀測到旗桿頂A(此時(shí)∠AEB=∠FED).在F處測得旗桿頂A的仰角為39.3°,平面鏡E的俯角為45°,F(xiàn)D=1.8米,問旗桿AB的高度約為多少米? (結(jié)果保留整數(shù))(參考數(shù)據(jù):tan39.3°≈0.82,tan84.3°≈10.02)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2016年國慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計(jì)車費(fèi) | 0 | 0.5 | 0.9 | 1.5 |
同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫出的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營商在該校投放A品牌共享單車能否獲利? 說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB表示路燈,CD、C′D′表示小明所在兩個(gè)不同位置:
(1)分別畫出這兩個(gè)不同位置小明的影子;
(2)小明發(fā)現(xiàn)在這兩個(gè)不同的位置上,他的影子長分別是自己身高的1倍和2倍,他又量得自己的身高為1.5米,DD′長為3米,你能幫他算出路燈的高度嗎?(B、D、D′在一條直線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,3),點(diǎn)B(﹣2,1).
(1)請(qǐng)運(yùn)用所學(xué)數(shù)學(xué)知識(shí)構(gòu)造圖形求出AB的長;
(2)若Rt△ABC中,點(diǎn)C在坐標(biāo)軸上,請(qǐng)?jiān)趥溆脠D1中畫出圖形,找出所有的點(diǎn)C后不用計(jì)算寫出你能寫出的點(diǎn)C的坐標(biāo);
(3)在x軸上是否存在點(diǎn)P,使PA=PB且PA+PB最?若存在,就求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)簡要說明理由(在備用圖2中畫出示意圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空:
(1)已知,△ABC中,∠C+∠A=4∠B,∠C﹣∠A=40°,則∠A= 度;∠B= 度;∠C= 度;
(2)一個(gè)多邊形的內(nèi)角和與外角和之和為2160°,則這個(gè)多邊形是 邊形;
(3)在如圖的平面直角坐標(biāo)系中,點(diǎn)A(﹣2,4),B(4,2),在x軸上取一點(diǎn)P,使點(diǎn)P到點(diǎn)A和點(diǎn)B的距離之和最小.則點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b與直線y=2x+6關(guān)于y軸對(duì)稱且交于點(diǎn)A,直線y=2x+6交x軸于點(diǎn)B,直線y=kx+b交x軸于點(diǎn)C,正方形DEFG一邊DG在線段BC上,點(diǎn)E在線段AB上,點(diǎn)F在線段AC上,則點(diǎn)G的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】)如圖,在△ABC中,D是BC邊上的中點(diǎn),F(xiàn)、E分別是AD及其延長線上的點(diǎn),CF∥BE。
(1)試說明△BDE≌△CDF
(2)請(qǐng)連接BF、CE,試判斷四邊形BECF是何種特殊四邊形,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com