(2012•東營)如圖,一次函數(shù)y=x+3的圖象與x軸,y軸交于A,B兩點,與反比例函數(shù)y=
4
x
的圖象相交于C,D兩點,分別過C,D兩點作y軸,x軸的垂線,垂足為E,F(xiàn),連接CF,DE.有下列四個結(jié)論:
①△CEF與△DEF的面積相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正確的結(jié)論是( 。
分析:設D(x,
4
x
),得出F(x,0),根據(jù)三角形的面積公式求出△DEF的面積,同法求出△CEF的面積,即可判斷①;根據(jù)面積相等,推出邊EF上的高相等,推出CD∥EF,即可證出△AOB∽△FOE,可判斷②;算出C、D點坐標,可得到DF=CE,再證出∠DCE=∠FDA=45°,根據(jù)全等三角形的判定判斷③即可;證出平行四邊形BDFE和平行四邊形ACEF,可推出BD=AC,判斷④即可.
解答:解:①設D(x,
4
x
),則F(x,0),
由圖象可知x>0,
∴△DEF的面積是:
1
2
×|
4
x
|×|x|=2,
設C(a,
4
a
),則E(0,
4
a
),
由圖象可知:
4
a
<0,a>0,
△CEF的面積是:
1
2
×|a|×|
4
a
|=2,
∴△CEF的面積=△DEF的面積,
故①正確;

②△CEF和△DEF以EF為底,則兩三角形EF邊上的高相等,
故EF∥CD,
∴FE∥AB,
∴△AOB∽△FOE,
故②正確;

③∵C、D是一次函數(shù)y=x+3的圖象與反比例函數(shù)y=
4
x
的圖象的交點,
∴x+3=
4
x

解得:x=-4或1,
經(jīng)檢驗:x=-4或1都是原分式方程的解,
∴D(1,4),C(-4,-1),
∴DF=4,CE=4,
∵一次函數(shù)y=x+3的圖象與x軸,y軸交于A,B兩點,
∴A(-3,0),B(0,3),
∴∠ABO=∠BAO=45°,
∵DF∥BO,AO∥CE,
∴∠BCE=∠BAO=45°,∠FDA=∠OBA=45°,
∴∠DCE=∠FDA=45°,
在△DCE和△CDF中
DF=CE
∠FDC=∠ECD
DC=CD
,
∴△DCE≌△CDF(SAS),
故③正確;

④∵BD∥EF,DF∥BE,
∴四邊形BDFE是平行四邊形,
∴BD=EF,
同理EF=AC,
∴AC=BD,
故④正確;
正確的有4個.
故選C.
點評:本題考查了平行四邊形的性質(zhì)和判定,三角形的面積,全等三角形的判定,相似三角形的判定,檢查同學們綜合運用定理進行推理的能力,關(guān)鍵是需要同學們牢固掌握課本知識.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•東營)如圖,AB是⊙O的直徑,AM和BN是它的兩條切線,DE切⊙O于點E,交AM于點D,交BN于點C,
(1)求證:OD∥BE;
(2)如果OD=6cm,OC=8cm,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東營)如圖某天上午9時,向陽號輪船位于A處,觀測到某港口城市P位于輪船的北偏西67.5°,輪船以21海里/時的速度向正北方向行駛,下午2時該船到達B處,這時觀
測到城市P位于該船的南偏西36.9°方向,求此時輪船所處位置B與城市P的距離?(參考數(shù)據(jù):sin36.9°≈
3
5
,tan36.9°≈
3
4
,sin67.5°≈
12
13
,tan67.5°≈
12
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東營)如圖,在直角坐標系中,矩形OABC的頂點O在坐標原點,邊OA在x軸上,OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點O位似,且矩形OA′B′C′的面積等于矩形OABC面積的
1
4
,那么點B′的坐標是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東營)如圖,長青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到B地.已知公路運價為1.5元/(噸•千米),鐵路運價為1.2元/(噸•千米),且這兩次運輸共支出公路運輸費15000元,鐵路運輸費97200元.求:
(1)該工廠從A地購買了多少噸原料?制成運往B地的產(chǎn)品多少噸?
(2)這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?

查看答案和解析>>

同步練習冊答案