設(shè)計(jì)一把直尺ABC,BC在地面上,AB與地面垂直,并且AB=10cm,移動(dòng)一個(gè)半徑不小于10cm的圓形輪子,使輪子緊靠A點(diǎn),且與BC相切于D點(diǎn)(如圖).設(shè)計(jì)要求在D處的刻度恰好顯示這個(gè)輪子的半徑(以厘米為單位).那么,當(dāng)BC的長(zhǎng)度為1M時(shí),BC上可標(biāo)出的最大刻度是______.
AB=10cm,BC=100cm,
連接OA、OC,過(guò)A作AH⊥OC于H,
設(shè)OA=OD=rcm,
當(dāng)D與C重合時(shí),半徑r為最大,
就是標(biāo)出的最大刻度,
此時(shí)OH=(r-10)cm,AH=BC=100cm,
由勾股定理得:1002+(r-10)2=r2,
解得:r=505.
故答案為:505cm.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線l1與l2相交于點(diǎn)A,點(diǎn)B、C分別在直線l1與l2上,且BC⊥l2,垂足為C點(diǎn).點(diǎn)D在直線l2上,AC=4,BC=3.
(1)畫出⊙O,使⊙O經(jīng)過(guò)點(diǎn)B且與直線l2相切于點(diǎn)D(不寫畫法,保留畫圖痕跡);
(2)是否存在這樣的⊙O1,既與直線l2相切又與直線l1相切于點(diǎn)B?若存在,求出⊙O1的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB為⊙O的直徑,BC⊥AB,CP切⊙O于點(diǎn)P,連OC,交⊙O于N,交BP于E,連BN,AP.
(1)求證:BN平分∠PBC.
(2)連AC交BP于M,若AB=BC=4,求tan∠PAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,⊙O是△ABC的外接圓,且AB=AC=13,BC=24,PA是⊙O的切線,A為切點(diǎn),割線PBD過(guò)圓心,交⊙O于另一點(diǎn)D,連接CD.
(1)求證:PABC;
(2)求⊙O的半徑及CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知一個(gè)三角形的周長(zhǎng)和面積分別是84、210,一個(gè)單位圓在它的內(nèi)部沿著三邊勻速無(wú)摩擦地滾動(dòng)一周后回到原來(lái)的位置(如圖),則這個(gè)三角形的內(nèi)部以及邊界沒(méi)有被單位圓滾過(guò)的部分的面積是______(結(jié)果保留準(zhǔn)確值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,直線CD經(jīng)過(guò)⊙O上一點(diǎn)C,AD⊥DC,AC平分∠DAB.
(1)求證:直線CD為⊙O的切線;
(2)若AD=2,AC=
5
,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(人教版)已知:如圖,AB=BC,∠ABC=90°,以AB為直徑的⊙O交OC于點(diǎn)D,AD的延長(zhǎng)線交BC于點(diǎn)E,過(guò)D作⊙O的切線交BC于點(diǎn)F.下列結(jié)論:①CD2=CE•CB;②4EF2=ED•EA;③∠OCB=∠EAB;④DF=
1
2
CD.其中正確的有( 。
A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O的直徑DF與弦AB交于點(diǎn)E,C為⊙O外一點(diǎn),CB⊥AB于點(diǎn)B,G是直線CD上一點(diǎn),∠ADG=∠ABD,ADCE.
(1)求證:AD•CE=DE•DF.
(2)若∠DAE=30°,BC=2,AD=
5
2
,AE:BE=2:3,求
BD
的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB、CD是⊙0的兩條平行弦,BEAC交CD于E.過(guò)A點(diǎn)的切線交DC延長(zhǎng)線于P,若AC=3
2
,求PC•CE的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案