【題目】據(jù)電力部門統(tǒng)計(jì),每天8:00至21:00是用電的高峰期,簡稱“峰時(shí)”,21:00至次日8:00是用電的低谷時(shí)期,簡稱“谷時(shí)”,為了緩解供電需求緊張矛盾,某市電力部門于本月初統(tǒng)一換裝“峰谷分時(shí)”電表,對用電實(shí)行“峰谷分時(shí)電價(jià)”新政策,具體見下表:
(1)小張家上月“峰時(shí)”用電50度,“谷時(shí)”用電20度,若上月初換表,則相對于換表前小張家的電費(fèi)是增多了還是減少了?增多或減少了多少元?請說明理由.
(2)小張家這個(gè)月用電95度,經(jīng)測算比換表前使用95度電節(jié)省了5.9元,問小張家這個(gè)月使用“峰時(shí)電”和“谷時(shí)電”分別是多少度?
【答案】
(1)解:換電表前:0.52×(50+20)=36.4(元),
換電表后:0.55×50+0.30×20=27.5+6=33.5(元),
33.5﹣36.4=﹣2.9(元).
答:若上月初換表,則相對于換表前小張家的電費(fèi)是節(jié)省了2.9元;
(2)解:設(shè)小張家這個(gè)月使用“峰時(shí)”電是x度,則“谷時(shí)”電是(95﹣x)度,根據(jù)題意得
0.55x+0.30(95﹣x)=0.52×95﹣5.9,
解之,得x=60,
95﹣x=95﹣60=35.
答:小張家這個(gè)月使用“峰時(shí)”用電60度,谷時(shí)用電35度.
【解析】(1)分別計(jì)算出換電表前后所交的錢數(shù),再求差;
(2)設(shè)小張家這個(gè)月使用“峰時(shí)”電是x度,則“谷時(shí)”電是(95﹣x)度,根據(jù)“比換表前使用95度電節(jié)省了5.9元”列方程求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件200元,按標(biāo)價(jià)打八折售出后每件可獲利40元,則該商品的標(biāo)價(jià)為每件_______元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線的頂點(diǎn)M的坐標(biāo)為(﹣1,﹣4),且與x軸交于點(diǎn)A,點(diǎn)B(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)填空:b= ,c= ,直線AC的解析式為 ;
(2)直線x=t與x軸相交于點(diǎn)H.
①當(dāng)t=﹣3時(shí)得到直線AN(如圖1),點(diǎn)D為直線AC下方拋物線上一點(diǎn),若∠COD=∠MAN,求出此時(shí)點(diǎn)D的坐標(biāo);
②當(dāng)﹣3<t<﹣1時(shí)(如圖2),直線x=t與線段AC,AM和拋物線分別相交于點(diǎn)E,F(xiàn),P.試證明線段HE,EF,F(xiàn)P總能組成等腰三角形;如果此等腰三角形底角的余弦值為,求此時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長線交線段OA于點(diǎn)H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,當(dāng)G點(diǎn)在何位置時(shí)四邊形AEBD是矩形?請說明理由并求出點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是由一些火柴棒搭成的圖案:
(1)擺第①個(gè)圖案用根火柴棒,擺第②個(gè)圖案用根火柴棒,擺第③個(gè)圖案用根火柴棒.
(2)按照這種方式擺下去,擺第n個(gè)圖案用多少根火柴棒?
(3)計(jì)算一下擺121根火柴棒時(shí),是第幾個(gè)圖案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo);
(2)求直線BD的解析式;
(3)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l交BD于點(diǎn)M,試探究m為何值時(shí),四邊形CQMD是平行四邊形;
(4)在點(diǎn)P的運(yùn)動(dòng)過程中,是否存在點(diǎn)Q,使△BDQ是以BD為直角邊的直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com