【題目】如圖,拋物線y=x2-2x-3與x軸交于A,B兩點,與y軸交于點C,其對稱軸與拋物線相交于點M,與x軸相交于點N,點P是線段MN上的一個動點,連接CP,過點P作PE⊥CP交x軸于點E.
(1)求拋物線的頂點M的坐標;
(2)當點E與原點O的重合時,求點P的坐標;
(3)求動點E到拋物線對稱軸的最大距離是多少?
【答案】(1)(1,-4).(2)當點E與原點O的重合時,點P的坐標為(1,)或(1,).(3)點E到拋物線對稱軸的最大距離是4.
【解析】
(1)利用配方法將拋物線的解析式由一般式變形為頂點式,進而即可得出頂點M的坐標;
(2)利用二次函數(shù)圖象上點的坐標特征可求出點C的坐標,過點C作CF⊥直線MN,垂足為點F,易證△PON∽△CPF,利用相似三角形的性質(zhì)可得出關于PN長度的一元二次方程,解之即可得出PN的長,進而可得出點P的坐標;
(3)過點C作CF⊥直線MN,垂足為點F,設PN=m,分0<m<3,m=0或m=3,3<m≤4三種情況考慮:①當0<m<3時,由(2)可知:△PEN∽△CPF,利用相似三角形的性質(zhì)可得出EN關于m的函數(shù)關系式,利用二次函數(shù)的性質(zhì)即可解決最值問題;②當m=0或3時,點E和點N重合,此時EN=0;③當3<m≤4時,易證△PCF∽△EPN,利用相似三角形的性質(zhì)可得出EN關于m的函數(shù)關系式,利用二次函數(shù)的性質(zhì)即可解決最值問題.綜上,取EN的最大值即可得出結(jié)論.
解:(1)∵y=x2-2x-3=(x-1)2-4,
∴拋物線的頂點M的坐標為(1,-4).
(2)當x=0時,y=x2-2x-3=-3,
∴點C的坐標為(0,-3).
過點C作CF⊥直線MN,垂足為點F,如圖1所示.
∵∠PON+∠OPN=90°,∠OPN+∠CPF=180°-∠CPO=90°,
∴∠PON=∠CPF.
又∵∠PNO=∠CFP=90°,
∴△PON∽△CPF,
∴=,即=,
∴PN=,
∴當點E與原點O的重合時,點P的坐標為(1,)或(1,).
(3)過點C作CF⊥直線MN,垂足為點F,設PN=m,分三種情況考慮,如圖2所示.
①當0<m<3時,由(2)可知:△PEN∽△CPF,
∴=,即=m,
∴EN=-m2+3m=-(m-)2+.
∵-1<0,
∴當m=時,EN取得最大值,最大值為;
②當m=0或3時,點E和點N重合,此時EN=0;
③當3<m≤4時,∵∠PCF+∠CPF=90°,∠CPF+∠EPN=90°,
∴∠PCF=∠EPN.
又∵∠CFP=∠PNE=90°,
∴△PCF∽△EPN,
∴=,即=,
∴EN=m2-3m.
∵1>0,
∴當3<m≤4時,EN的值隨m值的增大而增大,
∴當m=4時,EN取得最大值,最大值為4.
綜上所述:點E到拋物線對稱軸的最大距離是4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點O與坐標原點重合,頂點A,C分別在坐標軸上,B(4,2),過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.
(1)直接寫出直線DE的解析式_________;
(2)若反比例函數(shù)y=(x>0)的圖象與直線MN有且只有一個公共點,求m的值.
(3)在分別過M,B的雙曲線y=(x>0)上是否分別存在點F,G使得B,M,F,G構成平行四邊形,若存在則求出F點坐標, 若不存在則說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學興趣小組活動中,李燕和劉凱兩位同學設計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針所指區(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針所指區(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針所指區(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:四邊形ABCD是平行四邊形,點O是對角線AC、BD的交點,EF過點O且與AB、CD分別相交于點E、F,連接EC、AF.
(1)求證:DF=EB;(2)AF與圖中哪條線段平行?請指出,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A在反比例函數(shù)y=(x>0)的圖象上,作Rt△ABC,邊BC在x軸上,點D為斜邊AC的中點,連結(jié)DB并延長交y軸于點E,若△BCE的面積為4,則k=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,∠ACB=90°,AC=12,BC=5,P 是邊 AB 上的動點(不與點 B 重合),將△BCP 沿 CP 所在的直線翻折,得到△B'CP,連接 B'A,B'A 長度的最小值是 m,B'A 長度的最大值是 n,則 m+n 的值等于 ______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水果基地為了選出適應市場需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個品種的小西紅柿秧苗各 300 株分別種植在甲、乙兩個大棚. 對于市場最為關注的產(chǎn)量和產(chǎn)量的穩(wěn)定性,進行了抽樣調(diào)查,從甲、乙兩個大棚各收集了 24 株秧苗上的小西紅柿的個數(shù),并對數(shù)據(jù)進行整理、描述和分析。
下面給出了部分信息:(說明:45 個以下為產(chǎn)量不合格,45 個及以上為產(chǎn)量合格,其中 45~65 個為產(chǎn)量良好,65~85 個為產(chǎn)量優(yōu)秀)
a.補全下面乙組數(shù)據(jù)的頻數(shù)分布直方圖(數(shù)據(jù)分成 6 組: 25≤x<35,35≤x<45,45≤x<55,55≤x<65,65≤x<75,75≤x<85):
b.乙組數(shù)據(jù)在產(chǎn)量良好(45≤x<65)這兩組的具體數(shù)據(jù)為: 46 46 47 47 48 48 55 57 57 57 58 61
c.數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:
大棚 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 52.25 | 51 | 58 | 238 |
乙 | 52.25 | 57 | 210 |
(1)補全乙的頻數(shù)分布直方圖.
(2)寫出表中的值.
(3)根據(jù)樣本情況,估計乙大棚產(chǎn)量良好及以上的秧苗數(shù)為 株.
(4)根據(jù)抽樣調(diào)查情況,可以推斷出 大棚的小西紅柿秧苗品種更適應市場需求,寫出理由.(至少從兩個不同的角度說明推斷的合理性).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M(﹣2,m).
(1)求反比例函數(shù)的解析式;
(2)當y2>y1時,求x的取值范圍;
(3)求點B到直線OM的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com