【題目】如圖,Rt△ABC中,∠C=90°,AB=5,AC=3,D點(diǎn)從BC的中點(diǎn)到C點(diǎn)運(yùn)動(dòng),點(diǎn)E在AD上,以E為圓心的⊙E分別與AB、BC相切,則⊙E的半徑R的取值范圍為( 。
A.≤R≤
B.≤R≤
C.≤R≤2
D.1≤R≤
【答案】B
【解析】解:當(dāng)點(diǎn)E在AD上,AD為△ABC的中線(xiàn),如圖1,作EH⊥BC于H,EF⊥AB于F,
∵以E為圓心的⊙E分別與AB、BC相切,
∴EH=EF=R,
在Rt△ABC中,∵∠C=90°,AB=5,AC=3,
∴BC==4,
∵點(diǎn)D為BC的中點(diǎn),
∴BD=CD=2,
在Rt△ADC中,AD== ,
∵EH∥AC,
∴△DEH∽△DAC,
∴== , 即== ,
∴DE=R,DH=R,
∴AE=AD﹣DE=﹣R,BH=BD+DH=2+R,
∵以E為圓心的⊙E分別與AB、BC相切,
∴BF=BH=2+R
∴AF=AB﹣BF=3﹣R,
在Rt△AEF中,∵EF2+AF2=AE2 ,
∴R2+(3﹣R)2=(﹣R)2 , 解得R=;
當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)C的位置,如圖2,作EF⊥AB于F,
∵以E為圓心的⊙E分別與AB、BC相切,
∴EC=EF=R,
∴AE=AC﹣EC=3﹣R,
∵∠FAE=∠CAB,
∴Rt△AFE∽R(shí)t△ACB,
∴= , 即= , 解得R= ,
∴當(dāng)D點(diǎn)從BC的中點(diǎn)到C點(diǎn)運(yùn)動(dòng),點(diǎn)E在AD上,以E為圓心的⊙E分別與AB、BC相切,則⊙E的半徑R的取值范圍為≤R≤ .
故選B.
【考點(diǎn)精析】掌握切線(xiàn)的性質(zhì)定理是解答本題的根本,需要知道切線(xiàn)的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)2、經(jīng)過(guò)切點(diǎn)垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心3、圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,CA=CB,AD是腰BC邊上的高,△ACD的內(nèi)切圓⊙E分別與邊AD、BC相切于點(diǎn)F、G,連AE、BE.
(1)求證:AF=BG;
(2)過(guò)E點(diǎn)作EH⊥AB于H,試探索線(xiàn)段EH與線(xiàn)段AB的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時(shí)距地面的高度b為 米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式.
(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩點(diǎn)在數(shù)軸上的位置如圖所示,O為原點(diǎn),現(xiàn)A,B兩點(diǎn)分別以1個(gè)單位長(zhǎng)度/秒的速度同時(shí)向左運(yùn)動(dòng)。
(1)幾秒后,原點(diǎn)恰好在A,B兩點(diǎn)正中間?
(2)幾秒后,恰好有OA:OB=1:2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(-3pq)2;
(2)-x3+(-4x)2x;
(3)(m4m÷m2n)·mn;
(4)(-2)-2-32÷(3.144+π)0;
(5)(a2)3·(a2)4÷(-a2)5;
(6)[-2-3-8-1×(-1)-2]×.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O與直線(xiàn)l相切于A點(diǎn),點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā),P沿著直線(xiàn)l向右、Q沿著圓周按逆時(shí)針以相同的速度運(yùn)動(dòng),當(dāng)Q運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)P也停止運(yùn)動(dòng).連接OQ、OP(如圖),則陰影部分面積S1、S2的大小關(guān)系是( 。
A.S1=S2
B.S1≤S2
C.S1≥S2
D.先S1<S2 , 再S1=S2 , 最后S1>S2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CA⊥AB,DB⊥AB,已知AC=2,AB=6,點(diǎn)P射線(xiàn)BD上一動(dòng)點(diǎn),以CP為直徑作⊙O,點(diǎn)P運(yùn)動(dòng)時(shí),若⊙O與線(xiàn)段AB有公共點(diǎn),則BP最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校大門(mén)出口處有一自動(dòng)感應(yīng)欄桿,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),當(dāng)車(chē)輛經(jīng)過(guò)時(shí),欄桿AE會(huì)自動(dòng)升起,某天早上,欄桿發(fā)生故障,在某個(gè)位置突然卡住,這時(shí)測(cè)得欄桿升起的角度∠BAE=127°,已知AB⊥BC,支架AB高1.2米,大門(mén)BC打開(kāi)的寬度為2米,以下哪輛車(chē)可以通過(guò)?( 。
(欄桿寬度,汽車(chē)反光鏡忽略不計(jì))
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.車(chē)輛尺寸:長(zhǎng)×寬×高)
A.寶馬Z4(4200mm×1800mm×1360mm)
B.奇瑞QQ(4000mm×1600mm×1520mm)
C.大眾朗逸(4600mm×1700mm×1400mm)
D.奧迪A4(4700mm×1800mm×1400mm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC邊上的一點(diǎn),∠B=44°,∠BAD=28°,將△ABD沿AD折疊得到△AED,AE與BC交于點(diǎn)F.
(1)填空:∠AFC= 度;
(2)求∠EDF的度數(shù).
查看答案和解析>>