如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,動點P從B點出發(fā),沿線段BC向點C作勻速運動;動點Q從點D 出發(fā),沿線段DA向點A作勻速運動.過Q點垂直于AD的射線交AC于點M,交BC于點N.P、Q兩點同時出發(fā),速度都為每秒1個單位長度.當(dāng)Q點運動到A點,P、Q兩點同時停止運動.設(shè)點Q運動的時間為t秒.
【小題1】求NC,MC的長(用t的代數(shù)式表示)
【小題2】當(dāng)t為何值時,四邊形PCDQ構(gòu)成平行四邊形?
【小題3】當(dāng)t為何值時,射線QN恰好將△ABC的面積平分?并判斷此時△ABC的周長是否也被射線QN平分.


【小題1】∵AQ=3﹣t,
∴CN=4﹣(3﹣t)=1+t,
在Rt△ABC中,AC2=AB2+BC2=32+42,
∴AC=5,
在Rt△MNC中,cos∠NCM===,CM=;(3分)
【小題2】由于四邊形PCDQ構(gòu)成平行四邊形,
∴PC=QD,即4﹣t=t,
解得t=2,
則當(dāng)t=2時,四邊形PCDQ構(gòu)成平行四邊形;(6分)
【小題3】∵NC=t+1,MN=,
∴SMNC=×4×3,…(8分)
∴(1+t)2=8,
∴t1=2﹣1,t2=﹣2﹣1(舍)…(9分)
∴當(dāng)t=2﹣1時,△ABC的面積被射線QN平分.…(10分)
當(dāng)t=﹣2﹣1時,MC+NC=+1+t=(3+4+5),
∴此時△ABC的周長不被射線QN平分.…(12分)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點E是AB邊上一點,AE=BC,DE⊥EC,取DC的中點F,連接AF、BF.
(1)求證:AD=BE;
(2)試判斷△ABF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長FE交BC于點G,點G恰好是BC的中點,若AB=6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點E,連接CE,將△BCE繞點C順時針方向旋轉(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)若EF=6,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點,AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊答案