如圖,∠MBN的兩邊BM,BN上分別有兩點(diǎn)A、C,滿足BC=2BA,作□ABCD,取AD的中點(diǎn)E,作CF⊥CD,CF與AB所在的直線交于點(diǎn)F。
(1)當(dāng)∠B=時(shí),直接寫(xiě)出∠DEF的度數(shù);
(2)在射線BM繞B點(diǎn)旋轉(zhuǎn)的過(guò)程中,若∠B=,∠DEF=<X<,<Y<),求:Y關(guān)于X的函數(shù)解析式及相應(yīng)自變量X的取值范圍,           

(1)∠DEF=°;…………2分
    (2)對(duì)∠B的大小分三種情況討論如下:

①當(dāng)時(shí),點(diǎn)F在線段AB上(見(jiàn)圖7-1)。
延長(zhǎng)FE,并與CD的延長(zhǎng)線交于點(diǎn)G,記∠AFE=
∵ ABCD,∴ AB∥CD,AD=BC,AB=CD,∠3=∠B=x°。
∴∠DGE=∠AFE=。
可得△AEF≌△DEG。
∴ EF=EG,CE為Rt△CFG斜邊的中線。
∴ EF=EG,∠1=∠G=
∵ BC=2AB,
∴ 2DE=2CD,DE=CD。
∴等腰三角形△CDE中,∠1=
∴ 
…………3分
<1>當(dāng)∠B=90°時(shí),點(diǎn)F與點(diǎn)B重合,(見(jiàn)圖7-2) 此時(shí)∠DEF=135°,,
所以仍成立!4分
<2>當(dāng)∠B=60°時(shí),點(diǎn)F與點(diǎn)A重合,∠DEF=180°不合題意(見(jiàn)圖7-3)。

②當(dāng)時(shí),點(diǎn)F在線段AB的延長(zhǎng)線上(見(jiàn)圖7-4)。
與①同理可得!6分
  
③當(dāng)時(shí),點(diǎn)F在線段BA的延長(zhǎng)線上(如圖7-5)。
與①同理可得CE為Rt△CFG斜邊的中線,EC=EG,DE=CD。
∴△CEG和△CDE為等腰三角形。
在等腰三角形△CEG中,∠1=180°-2∠2,在等腰三角形△CDE中,,
∴∠DEF=180°-∠3=180°-(∠CED-∠1)=360°-3∠2=!7分
綜上所述,當(dāng)時(shí),;
當(dāng)時(shí),。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,∠MBN的兩邊BM,BN上分別有兩點(diǎn)A、C,滿足BC=2BA,作?ABCD,取AD的中點(diǎn)E,作CF⊥CD,CF與AB所在的直線交于點(diǎn)F.
(1)當(dāng)∠B=90°時(shí),直接寫(xiě)出∠DEF的度數(shù);
(2)在射線BM繞B點(diǎn)旋轉(zhuǎn)的過(guò)程中,若∠B=x°,∠DEF=y°(0°<x<180°,0°<y<180°),求:y關(guān)于x的函數(shù)解析式及相應(yīng)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在四邊形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,它的兩邊分別交AD、DC于點(diǎn)E、F,且AE≠CF.

(1)求證:EF=AE+CF.
(2)如圖2,當(dāng)∠MBN的兩邊分別交AD、DC的延長(zhǎng)線于點(diǎn)E、F,其余條件均不變時(shí),(1)中的結(jié)論是否成立?如果成立,請(qǐng)證明.如果不成立,線段AE、CF,EF又有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆北京鐵路第二中學(xué)初二期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,∠MBN的兩邊BM,BN上分別有兩點(diǎn)A、C,滿足BC=2BA,作□ABCD,取AD的中點(diǎn)E,作CF⊥CD,CF與AB所在的直線交于點(diǎn)F。

(1)當(dāng)∠B=時(shí),直接寫(xiě)出∠DEF的度數(shù);

(2)在射線BM繞B點(diǎn)旋轉(zhuǎn)的過(guò)程中,若∠B=,∠DEF=<X<,<Y<),求:Y關(guān)于X的函數(shù)解析式及相應(yīng)自變量X的取值范圍,           

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,∠MBN的兩邊BM,BN上分別有兩點(diǎn)A、C,滿足BC=2BA,作?ABCD,取AD的中點(diǎn)E,作CF⊥CD,CF與AB所在的直線交于點(diǎn)F.
(1)當(dāng)∠B=90°時(shí),直接寫(xiě)出∠DEF的度數(shù);
(2)在射線BM繞B點(diǎn)旋轉(zhuǎn)的過(guò)程中,若∠B=x°,∠DEF=y°(0°<x<180°,0°<y<180°),求:y關(guān)于x的函數(shù)解析式及相應(yīng)自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案