已知式子y=ax2+bx+c,且當(dāng)x=1時(shí),y=3;當(dāng)x=-1時(shí),y=8;當(dāng)x=2時(shí),y=9,試求a,b,c的值.
分析:根據(jù)題意,分別把當(dāng)x=1時(shí),y=3;當(dāng)x=-1時(shí),y=8;當(dāng)x=2時(shí),y=9,代入解析式聯(lián)立成三元一次方程組求解即可.
解答:解:把(1,3)、(-1,8)、(2,9)代入y=ax2+bx+c,
a+b+c=3
a-b+c=8
4a+2b+c=9
,
解得
a=
17
6
b=-
5
2
c=
8
3
點(diǎn)評:主要考查了用待定系數(shù)法求函數(shù)解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線y=ax2+bx-1經(jīng)過點(diǎn)A(一1,0)、B(m,0)(m>0),且與y軸交于點(diǎn)C
(1)求拋物線對應(yīng)的函數(shù)表達(dá)式(用含m的式子表示);
(2)如圖,⊙M經(jīng)過A、B、C三點(diǎn),求扇形MBC(陰影部分)的面積S(用含m的式子表示);
(3)若拋物線上存在點(diǎn)P,使得△APB∽△ABC,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸精英家教網(wǎng)的正半軸交于點(diǎn)C,以AB為直徑的圓經(jīng)過點(diǎn)C及拋物線上的另一點(diǎn)D,∠ABC=60度.
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo)(用含有字母c的式子表示);
(2)如果四邊形ABCD的面積為
3
,求拋物線的解析式;
(3)如果當(dāng)x>1時(shí),y隨x的增大而減小,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線y=ax2-2ax與直線l:y=ax(a>0)的交點(diǎn)除了原點(diǎn)O外,還相交于另一點(diǎn)A.
(1)分別求出這個(gè)拋物線的頂點(diǎn)、點(diǎn)A的坐標(biāo)(可用含a的式子表示);
(2)將拋物線y=ax2-2ax沿著x軸對折(翻轉(zhuǎn)180°)后,得到的圖象叫做“新拋物線”,則:①當(dāng)a=1時(shí),求這個(gè)“新拋物線”的解析式,并判斷這個(gè)“新拋物線”的頂點(diǎn)是否在直線l上;②在①的條件下,“新拋物線”上是否存在一點(diǎn)P,使點(diǎn)P到直線l的距離等于線段OA的
124
?若存在,請直接寫出滿足條件的點(diǎn)P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知式子y=ax2+bx+c,且當(dāng)x=1時(shí),y=3;當(dāng)x=-1時(shí),y=8;當(dāng)x=2時(shí),y=9,試求a,b,c的值.

查看答案和解析>>

同步練習(xí)冊答案