【題目】某商場銷售一種商品,進價為每個20元,規(guī)定每個商品售價不低于進價,且不高于60元,經(jīng)調(diào)查發(fā)現(xiàn),每天的銷售量y(個)與每個商品的售價x(元)滿足一次函數(shù)關(guān)系,其部分數(shù)據(jù)如下所示:

每個商品的售價x(元)

30

40

50

每天的銷售量y(個)

100

80

60

(1)求yx之間的函數(shù)表達式;

(2)設(shè)商場每天獲得的總利潤為w(元),求wx之間的函數(shù)表達式;

(3)不考慮其他因素,當(dāng)商品的售價為多少元時,商場每天獲得的總利潤最大,最大利潤是多少?

【答案】(1)y=-2x+160;(2)w=-2x2+200x-3200;(3)當(dāng)商品的售價為50元時,商場每天獲得的總利潤最大,最大利潤是1800.

【解析】

每天的銷售量y(個)與每個商品的售價x(元)滿足一次函數(shù)關(guān)系,用待定系數(shù)法求解;

根據(jù)利潤的表達式:利潤=售價-進價求解;

根據(jù)(2)的表達式是二次函數(shù),利用二次函數(shù)的最值求解.

1)設(shè)yx之間的函數(shù)解析式為y=kx+b

,

解得,

yx之間的函數(shù)表達式是y=-2x+160;

2)由題意可得,w=x-20)(-2x+160=-2x2+200x-3200,

wx之間的函數(shù)表達式是w=-2x2+200x-3200;

3)∵w=-2x2+200x-3200=-2x-502+180020≤x≤60,

∴當(dāng)20≤x≤50時,wx的增大而增大;

當(dāng)50≤x≤60時,wx的增大而減。

當(dāng)x=50時,w取得最大值,此時w=1800

即當(dāng)商品的售價為50元時,商場每天獲得的總利潤最大,最大利潤是1800

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,、是弧(異于)上兩點,是弧上一動點,的角平分線交于點,的平分線交于點.當(dāng)點從點運動到點時,則、兩點的運動路徑長的比是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,陽光通過窗口照到教室內(nèi),豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.

(1)求拋物線的函數(shù)解析式;

(2)P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,CPQ的面積為S.

①求S關(guān)于m的函數(shù)表達式;

②當(dāng)S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過點P,且y的值隨x值的增大而增大,則點P的坐標可以為(  )

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,∠ABC90°CDAD,AD2CD22AB2

1)求證:ABBC;

2)當(dāng)BEADE時,試證明:BEAECD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)場學(xué)習(xí):在ABC中,AB、BC、AC三邊的長分別為、,求這個三角形的面積.小華同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點ABC(即ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求ABC的高,而借用網(wǎng)格就能計算出它的面積.這種方法叫做構(gòu)圖法.

(1)ABC的面積為: _________ ;

(2)若DEF三邊的長分別為、、,請在圖1的正方形網(wǎng)格中畫出相應(yīng)的DEF,并利用構(gòu)圖法求出它的面積;

(3)如圖2,一個六邊形的花壇被分割成7個部分,其中正方形PRBA,RQDC,QPFE的面積分別為13,10,17,且PQR、BCR、DEQ、AFP的面積相等,求六邊形花壇ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面各問題中給出的兩個變量xy,其中yx的函數(shù)的是

x是正方形的邊長,y是這個正方形的面積;

x是矩形的一邊長,y是這個矩形的周長;

x是一個正數(shù),y是這個正數(shù)的平方根;

x是一個正數(shù),y是這個正數(shù)的算術(shù)平方根.

A. ①②③B. ①②④C. ②④D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面真角坐標系中, 、兩點, 若在軸上取一點, 使點到點和點的距離之和最小,則點的坐標是__________

查看答案和解析>>

同步練習(xí)冊答案