如圖,直角梯形ABCD中,AD∥BC,∠A=90o,∠C=60°,AD=3cm,BC=9cm.⊙O的圓心O1從點A開始沿折線A—D—C以1cm/s的速度向點C運動,⊙O2的圓心O2從點B開始沿BA邊以cm/s的速度向點A運動,⊙O1半徑為2cm,⊙O2的半徑為4cm,若O1、O2分別從點A、點B同時出發(fā),運動的時間為ts.
(1)請求出⊙O2與腰CD相切時t的值;
(2)在0s<t≤3s范圍內,當t為何值時,⊙O1與⊙O2外切?
(1)秒;(2)3秒
【解析】
試題分析:(1)先設⊙O2運動到E與CD相切,且切點是F;連接EF,并過E作EG∥BC,交CD于G,再過G作GH⊥BC于H,即可得到直角三角形EFG和矩形GEBH.由∠C=60°可得∠CGH=30°,即可得到∠FGE=60°.在Rt△EFG中,根據勾股定理可得EG的值,那么CH=BC-BH=BC-EG.在Rt△CGH中,利用60°的角的正切值可求出GH的值,即可求得結果;
(2)因為0s<t≤3s,所以O1一定在AD上,連接O1O2.利用勾股定理可得到關于t的一元二次方程,解出即可.
(1)如圖所示,設點O2運動到點E處時,⊙O2與腰CD相切.過點E作EF⊥DC,垂足為F,則EF=4cm.作EG∥BC,交DC于G,作GH⊥BC,垂足為H.
由直角三角形GEF中,∠EGF+∠GEF=90°,
又∠EGF+∠CGH=90°,
∴∠GEF=∠CGH=30°,
設FG=xcm,則EG=2xcm,又EF=4cm,
根據勾股定理得:,解得,
則,
又在直角三角形CHG中,∠C=60°,
∴
則EB=GH=CHtan60°=
∴秒;
(2)由于0s<t≤3s,所以,點O1在邊AD上.如圖連接O1O2,則O1O2=6cm.
由勾股定理得,
解得,(不合題意,舍去).
答:經過3秒,⊙O1與⊙O2外切.
考點:本題考查的是切線的性質,勾股定理,矩形的判定和性質
點評:解答本題的關鍵是注意用含t的代數式來表示線段的長;同時熟記兩圓外切時圓心距等于兩圓半徑的和.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com