已知在直角梯形ABCD中,AD∥BC,CD⊥BC,將其沿對(duì)角線BD折疊,點(diǎn)A恰好落在邊CD所在的直線上的點(diǎn)A′,若AB=13,BC=12,則AD的長(zhǎng)為________.

7
分析:先畫出圖形,過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,在Rt△A′BC中求出A′C,設(shè)AD=x,則CD=x+5,在Rt△AEB中,利用勾股定理可得出關(guān)于x的方程,解出即可.
解答:過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,則A′B=AB=13,

在Rt△A′BC中,A′C==5,
設(shè)AD=x,則CD=A′D+A′C=x+5,
在Rt△ABE中,BE2+AE2=AB2,即(12-x)2+(x+5)2=132,
解得:x=7,即AD=7.
故答案為:7.
點(diǎn)評(píng):本題考查了翻折變換及梯形的知識(shí),解答本題的關(guān)鍵是熟練掌握翻折變換的性質(zhì)及勾股定理的表達(dá)式,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°.點(diǎn)E是DC的中點(diǎn),過(guò)點(diǎn)E作DC的垂線交AB于點(diǎn)P,交CB的延長(zhǎng)線于點(diǎn)M.點(diǎn)F在線段ME上,且滿足CF=AD,MF=MA.
(1)若∠MFC=120°,求證:AM=2MB;
(2)求證:∠MPB=90°-
12
∠FCM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在直角梯形ABCD中,AD∥BC,BC=5,CD=6,∠DCB=60°,∠ABC=90°.等邊三角形MPN(N為不動(dòng)點(diǎn))的邊長(zhǎng)為a,邊MN和直角梯形ABCD的底邊BC都在直線l上,NC=8.將直角梯形ABCD向左翻折180°,翻折一次得到圖形①,翻折二次得到圖形②,如此翻折下去.
(1)求直角梯形ABCD的面積;
(2)將直角梯形ABCD向左翻折二次,如果此時(shí)等邊三角形的邊長(zhǎng)a≥2,請(qǐng)直接寫出這時(shí)兩圖形重疊部分的面積是多少?
(3)將直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形與等邊三角形重疊部分的面積等于直角梯形ABCD的面積,請(qǐng)直接寫出這時(shí)等邊三角形的邊長(zhǎng)a至少應(yīng)為多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E為AB延長(zhǎng)線上一點(diǎn),連接ED,與BC交于點(diǎn)H.過(guò)E作CD的垂線,垂足為CD上的一點(diǎn)F,并與BC交于點(diǎn)G.已知∵,G為CH的中點(diǎn).
(1)若HE=HG,求證:△EBH≌△GFC;
(2)若CD=4,BH=1,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•李滄區(qū)一模)已知:如圖,在直角梯形ABCD中,∠ABC=90°,AD∥BC,DE⊥AC于點(diǎn)F,交BC于點(diǎn)G,交AB的延長(zhǎng)線于點(diǎn)E,且AE=AC.
(1)求證:AB=AF;
(2)若∠ACB=30°,連接AG,判斷四邊形AGCD是什么特殊的四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,在直角梯形ABCD中,AD∥BC,BC=5cm,CD=6cm,∠DCB=60°,∠ABC=90度.等邊三角形MPN(N為不動(dòng)點(diǎn))的邊長(zhǎng)為acm,邊MN和直角梯形ABCD的底邊BC都在直線l上,NC=8cm.將直角梯形ABCD向左翻折180°,翻折一次得圖形①,翻折二次得圖形②,如此翻折下去.
(1)將直角梯形ABCD向左翻折二次,如果此時(shí)等邊三角形的邊長(zhǎng)a≥2cm,這時(shí)兩圖形重疊部分的面積是多少?
(2)將直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形與等邊三角形重疊部分的面積等于直角梯形ABCD的面積,這時(shí)等邊三角形的邊長(zhǎng)a至少應(yīng)為多少?
(3)將直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形精英家教網(wǎng)與等邊三角形重疊部分的面積等于直角梯形ABCD的面積的一半,這時(shí)等邊三角形的邊長(zhǎng)應(yīng)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案