【題目】如圖所示,已知正方形ABCD,直角三角形紙板的一個(gè)銳角頂點(diǎn)與點(diǎn)A重合,紙板繞點(diǎn)A旋轉(zhuǎn)時(shí),直角三角形紙板的一邊與直線CD交于E,分別過(guò)B、D作直線AE的垂線,垂足分別為F、G.
(1)當(dāng)點(diǎn)E在DC延長(zhǎng)線時(shí),如圖①,求證:BF=DG﹣FG;
(2)將圖①中的三角板繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得圖②、圖③,此時(shí)BF、FG、DG之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出結(jié)論(不必證明)

【答案】
(1)證明:如圖①,

∵四邊形ABCD是正方形,

∴AB=AD,

∵B、D作直線AE的垂線,垂足分別為F、G.

∴∠AFB=∠DGA=90°,

∵∠BAF+∠GAD=90°,∠BAF+∠ABF=90°

∴∠ABF=∠GAD,

在△ABF和△ADG中,

,

∴△ABF≌△ADG(AAS),

∴BF=AG,AF=DG,

∵AG=AF﹣FG;

∴BF=DG﹣FG


(2)證明:如圖②,

∵四邊形ABCD是正方形,

∴AB=AD,

∵B、D作直線AE的垂線,垂足分別為F、G.

∴∠AFB=∠DGA=90°,

∵∠BAF+∠GAD=90°,∠BAF+∠ABF=90°

∴∠ABF=∠DAG,

在△ABF和△ADG中,

∴△ABF≌△ADG(AAS),

∴BF=AG,AF=DG,

∵AG=AF+FG;

∴BF=DG+FG;

如圖③,∵四邊形ABCD是正方形,

∴AB=AD,

∵B、D作直線AE的垂線,垂足分別為F、G.

∴∠AFB=∠DGA=90°,

∵∠BAF+∠GAD=90°,∠BAF+∠ABF=90°

∴∠ABF=∠DAG,

在△ABF和△ADG中,

,

∴△ABF≌△ADG(AAS),

∴BF=AG,AF=DG,

∵AG=FG﹣AF;

∴BF=FG﹣DG.


【解析】(1)如圖①,由四邊形ABCD是正方形,可得AB=AD,由B、D作直線AE的垂線,垂足分別為F、G.可得∠AFB=∠DGA=90°由角的關(guān)系可得∠ABF=∠GAD,可得△ABF≌△ADG可得BF=AG,AF=DG,利用AG=AF﹣FG;即可證得BF=DG﹣FG;(2)如圖②,由四邊形ABCD是正方形,可得AB=AD,由B、D作直線AE的垂線,垂足分別為F、G.可得∠AFB=∠DGA=90°由角的關(guān)系可得∠ABF=∠GAD,可得△ABF≌△ADG可得BF=AG,AF=DG,利用AG=AF+FG,可得BF=DG+FG;如圖③,由四邊形ABCD是正方形,可得AB=AD,由B、D作直線AE的垂線,垂足分別為F、G.可得∠AFB=∠DGA=90°由角的關(guān)系可得∠ABF=∠GAD,可得△ABF≌△ADG可得BF=AG,AF=DG,利用AG=FG﹣AF,可得BF=FG﹣DG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=13,BC=14.

(1)如圖1,AD⊥BC于點(diǎn)D,且BD=5,則△ABC的面積為   ;

(2)在(1)的條件下,如圖2,點(diǎn)H是線段AC上任意一點(diǎn),分別過(guò)點(diǎn)A,C作直線BH的垂線,垂足為E,F(xiàn),設(shè)BH=x,AE=m,CF=n,請(qǐng)用含x的代數(shù)式表示m+n,并求m+n的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了能以“更新、更綠、更潔、更寧”的城市形象迎接2011年大運(yùn)會(huì)的召開(kāi),深圳市全面實(shí)施市容市貌環(huán)境提升行動(dòng).某工程隊(duì)承擔(dān)了一段長(zhǎng)為1500米的道路綠化工程,施工時(shí)有兩張綠化方案: 甲方案是綠化1米的道路需要A型花2枝和B型花3枝,成本是22元;
乙方案是綠化1米的道路需要A型花1枝和B型花5枝,成本是25元.
現(xiàn)要求按照乙方案綠化道路的總長(zhǎng)度不能少于按甲方案綠化道路的總長(zhǎng)度的2倍.
(1)求A型花和B型花每枝的成本分別是多少元?
(2)求當(dāng)按甲方案綠化的道路總長(zhǎng)度為多少米時(shí),所需工程的總成本最少?總成本最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9分)如圖是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:

(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(2,4),B點(diǎn)坐標(biāo)為(4,2);

(2)在第二象限內(nèi)的格點(diǎn)上畫(huà)一點(diǎn)C,使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),則C點(diǎn)坐標(biāo)是________;

(3)ABC的周長(zhǎng)=_________(結(jié)果保留根號(hào));

(4)畫(huà)出ABC關(guān)于關(guān)于y軸對(duì)稱的ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(感知)如圖①,ABCD,點(diǎn)E在直線ABCD之間,連結(jié)AE、BE,試說(shuō)明∠BEE+DCE=AEC.下面給出了這道題的解題過(guò)程,請(qǐng)完成下面的解題過(guò)程,并填空(理由或數(shù)學(xué)式):

解:如圖①,過(guò)點(diǎn)EEFAB

∴∠BAE=1(   

ABCD(   

CDEF(   

∴∠2=DCE

∴∠BAE+DCE=1+2(   

∴∠BAE+DCE=AEC

(探究)當(dāng)點(diǎn)E在如圖②的位置時(shí),其他條件不變,試說(shuō)明∠AEC+FGC+DCE=360°;

(應(yīng)用)點(diǎn)E、F、G在直線ABCD之間,連結(jié)AE、EF、FGCG,其他條件不變,如圖③.若∠EFG=36°,則∠BAE+AEF+FGC+DCG=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A路口的交通信號(hào)燈依次顯示為紅燈亮20秒,綠燈亮40秒,再紅燈亮20秒,綠燈亮40秒,如此連續(xù)不斷循環(huán)顯示下去…
(1)求A路口顯示紅燈的概率.
(2)小亮上班路上會(huì)遇到A,B兩個(gè)路口,B路口紅綠燈的顯示方式和A路口完全相同,求他在上班路上兩次都遇到紅燈的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中∠C=90°,A=30°,BC=2,點(diǎn)P,Q,R分別是AB,AC,BC上的動(dòng)點(diǎn),PQ+PR+QR的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)E,過(guò)點(diǎn)E作MN∥BC交AB于M,交AC于N,若BM+CN=9,則線段MN的長(zhǎng)為(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,(1)∠BED與∠CBE是直線________,________被直線________所截形成的________角;

(2)∠A與∠CED是直線________,________被直線________所截形成的________角;

(3)∠CBE與∠BEC是直線________,________被直線________所截形成的________角;

(4)∠AEB與∠CBE是直線________,________被直線________所截形成的________角.

查看答案和解析>>

同步練習(xí)冊(cè)答案