【題目】如圖,BC是⊙O的直徑,A是弦BD延長(zhǎng)線上一點(diǎn),切線DE平分AC于E。
(1)求證:AC是⊙O的切線;
(2)若AD:DB=3:2,AC=15,求⊙O的直徑。
【答案】(1)連接OD、CD,先根據(jù)切線的性質(zhì)得到OD⊥DE,即∠1+∠2=90°,再根據(jù)圓周角定理可得∠BDC=90°,再結(jié)合E為AC的中點(diǎn),根據(jù)直角三角形的性質(zhì)可得DE=CE=AE=AC,即得∠2=∠3,根據(jù)元的基本性質(zhì)可得∠1=∠4,即得∠3+∠4=∠1+∠2=90°,從而證得結(jié)論;(2)
【解析】
試題分析:(1)連接OD、CD,先根據(jù)切線的性質(zhì)得到OD⊥DE,即∠1+∠2=90°,再根據(jù)圓周角定理可得∠BDC=90°,再結(jié)合E為AC的中點(diǎn),根據(jù)直角三角形的性質(zhì)可得DE=CE=AE=AC,即得∠2=∠3,根據(jù)元的基本性質(zhì)可得∠1=∠4,即得∠3+∠4=∠1+∠2=90°,從而證得結(jié)論;
(2)分別證得△ACD∽△ABC與△ACD∽△BCD,根據(jù)相似三角形的性質(zhì)可得,,由AD:DB=3:2可設(shè)AD=3k,DB=2k,則AB=5k,即可求得結(jié)果.
(1)連接OD、CD
∵DE是⊙O的切線,切點(diǎn)為D
∴OD⊥DE于D
∴∠ODE=90°,即∠1+∠2=90°;
∵BC為⊙O的直徑
∴∠BDC=90°
∴∠ADC=90°
∵E為AC的中點(diǎn)
∴DE=CE=AE=AC
∴∠2=∠3
∵⊙O中,OC=OD
∴∠1=∠4
∴∠3+∠4=∠1+∠2=90°
∴OC⊥AC于C
∴AC是⊙O的切線;
(2)∵∠ACD=∠BDC=90°,∠A=∠A
∴△ACD∽△ABC
同理:△ACD∽△BCD
∴①
②
∵AD:DB=3:2
∴設(shè)AD=3k,DB=2k,則AB=5k
∴①
②
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形紙片ABCD的邊長(zhǎng)為12,E是邊CD的中點(diǎn),連接AE,折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過點(diǎn)B,得到折痕BF,點(diǎn)F在AD上,若DE=5,則GE的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美麗的赤城湖水庫(kù)是蓬溪縣“天藍(lán)水綠山青”的真實(shí)寫照.如圖,赤城湖水庫(kù)的大壩橫截面是一個(gè)梯形,壩頂寬CD=4m,壩高3m,斜坡AD的坡度為1:2.5,斜坡BC的坡度為1:1.5,若大壩長(zhǎng)200m,求大壩所用的土方是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠從2011年起開始投入技改資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如下表所示:
年度 | 2011 | 2012 | 2013 | 2014 |
投入技改資金/萬元 | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本/(萬元/件) | 7.2 | 6 | 4.5 | 4 |
(1)請(qǐng)認(rèn)真分析表中的數(shù)據(jù),從你學(xué)過的一次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示其變化規(guī)律,并求出它的表達(dá)式;
(2)按照這種變化規(guī)律,2015年已投入技改資金5萬元.
①預(yù)計(jì)產(chǎn)品成本每件比2014年降低多少萬元?
②如果打算在2015年把每件產(chǎn)品的成本降低到3.2萬元,那么還需投入技改資金多少萬元?(精確到0.01萬元)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角板的直角頂點(diǎn)按如圖方式疊放在一起,友情提示:,,.
(1)①若,則的度數(shù)為__________;
②若,則的度數(shù)為__________.
(2)由(1)猜想與的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)且點(diǎn)在直線的上方時(shí),當(dāng)這兩塊角尺有一組邊互相平行時(shí),請(qǐng)直接寫出角度所有可能的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中名學(xué)生的成績(jī)(成績(jī)?nèi)?/span>整數(shù),總分分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
請(qǐng)根據(jù)所給信息,解答下列問題:
(1) , ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>以上(包括分)的為“優(yōu)”等,則該校參加這次比賽的名學(xué)生中成績(jī)“優(yōu)”等約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M是△ABC的邊BC的中點(diǎn),AN平分∠BAC,BN⊥AN于點(diǎn)N,延長(zhǎng)BN交AC于點(diǎn)D,已知AB=10,BC=15,MN=3
(1)求證:BN=DN;
(2)求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有A、B兩種型號(hào)的客車,它們的載客量、每天的租金如表所示:
A型號(hào)客車 | B型號(hào)客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
已知某中學(xué)計(jì)劃租用A、B兩種型號(hào)的客車共10輛,同時(shí)送七年級(jí)師生到沙家參加社會(huì)實(shí)踐活動(dòng),已知該中學(xué)租車的總費(fèi)用不超過5600元.
(1)求最多能租用多少輛A型號(hào)客車?
(2)若七年級(jí)的師生共有380人,請(qǐng)寫出所有可能的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)被分隔成A,B,A,B,C共5個(gè)區(qū),A區(qū)是邊長(zhǎng)為a m的正方形,C區(qū)是邊長(zhǎng)為c m的正方形.
(1)列式表示每個(gè)B區(qū)長(zhǎng)方形場(chǎng)地的周長(zhǎng),并將式子化簡(jiǎn);
(2)列式表示整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的周長(zhǎng),并將式子化簡(jiǎn);
(3)如果a=40,c=10,求整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com