【題目】如圖,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各題:
(1)作△ABC的高AD;
(2)作△ABC的角平分線AE;
(3)根據(jù)你所畫的圖形求∠DAE的度數(shù).
【答案】(1)見解析;(2)見解析;(3)20゜
【解析】
(1)以點(diǎn)A為圓心,適當(dāng)長為半徑畫弧,交BC于兩點(diǎn),以這兩點(diǎn)為圓心,大于這兩點(diǎn)距離的一半為半徑畫弧,兩弧交于一點(diǎn),做過這點(diǎn)和點(diǎn)A的直線交BC于點(diǎn)D,AD即為所求;
(2)以點(diǎn)A為圓心,以任意長為半徑畫弧,交AB,AC于兩點(diǎn),分別以這兩點(diǎn)為圓心,大于這兩點(diǎn)的距離的一半為半徑畫弧,在∠CAB的內(nèi)部交于一點(diǎn),過這一點(diǎn)及點(diǎn)A作直線交BC于點(diǎn)E,AE即為所求;
(3)利用角平分線把一個(gè)角平分的性質(zhì)和高線得到90°的性質(zhì)可得∠DAE的度數(shù).
解:(1)如圖, AD即為所求;
(2)如圖,AE即為所求;
(3)∵∠DAB=180°﹣∠ABC﹣∠ADB=180°﹣90°﹣40°=50°,∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣80°=60°,AE平分∠BAC,
∴∠BAE=∠BAC=30°,
∴∠DAE=∠DAB﹣∠BAE=50°﹣30°=20°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關(guān)于軸對稱的.
(2)寫出點(diǎn)的坐標(biāo)(直接寫答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α, 以OC為邊作等邊三角形OCD,連接AD.
(1)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說明理由;
(2)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以△ABC的邊AB,AC所在直線為對稱軸作△ABC的對稱圖形△ABD和△ACE,∠BAC=150°,線段BD與CE相交于點(diǎn)O,連接BE、ED、DC、OA.有如下結(jié)論:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④2EA=ED;⑤BP=EQ.其中正確的結(jié)論個(gè)數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(3a﹣6,a+4),B(﹣3,2),AB∥y軸,點(diǎn)P為直線AB上一點(diǎn),且PA=2PB,則點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=AD,∠BAD=90°,P是CD邊上一點(diǎn),連結(jié)PA,分別過點(diǎn)B,D作BE⊥PA,DF⊥PA,垂足分別為點(diǎn)E,F,如圖①
(1)求證:BE=DF+EF;
(2)若點(diǎn)P在DC的延長線上,如圖②,上述結(jié)論還成立嗎?如果成立請寫出證明過程;如果不成立,請寫出正確結(jié)論并加以證明.
(3)若點(diǎn)P在CD的延長線上,如圖③,那么這三條線段的數(shù)量關(guān)系是 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某洗衣機(jī)在洗滌衣服時(shí),經(jīng)歷了進(jìn)水、清洗、排水、脫水四個(gè)連續(xù)過程,其中進(jìn)水、清洗、排水時(shí)洗衣機(jī)中的水量y(升)與時(shí)間x(分鐘)之間的關(guān)系如折線圖所示,根據(jù)圖象解答下列問題:
(1)在這個(gè)變化過程中,自變量、因變量是什么?
(2)洗衣機(jī)的進(jìn)水時(shí)間是多少分鐘?清洗時(shí)洗衣機(jī)的水量是多少升?
(3)時(shí)間為10分鐘時(shí),洗衣機(jī)處于哪個(gè)過程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+6過點(diǎn)A(6,0),B(4,6),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)如圖1,直線l的解析式為y=x,拋物線的對稱軸與線段BC交于點(diǎn)P,過點(diǎn)P作直線l的垂線,垂足為點(diǎn)H,連接OP,求△OPH的面積;
(3)把圖1中的直線y=x向下平移4個(gè)單位長度得到直線y=x-4,如圖2,直線y=x-4與x軸交于點(diǎn)G.點(diǎn)P是四邊形ABCO邊上的一點(diǎn),過點(diǎn)P分別作x軸、直線l的垂線,垂足分別為點(diǎn)E,F.是否存在點(diǎn)P,使得以P,E,F為頂點(diǎn)的三角形是等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com