mn+5÷mn-3
分析:根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減,求解即可.
解答:解:原式=mn+5-n+3
=m8
點評:本題考查了同底數(shù)冪的除法,解答本題的關鍵是掌握同底數(shù)冪的除法法則.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在舞臺上有兩根豎直放置的鐵桿,其中鐵桿AB長1m,CD長2m,兩根鐵桿之間的距離為3m,現(xiàn)在B、D之間拉起一根鋼索,雜技演員在上面表演走鋼絲,為了描述演員的位置,小明以A點為坐標原點,建立了如圖所示的平面直角坐標系,演員的位置為點M,設其精英家教網(wǎng)橫坐標為x,縱坐標為y.
(1)寫出線段BD的函數(shù)關系式;
(2)為了保護演員的安全,過D點拉了一根與地面平行的鋼索DE,在上面掛上了一條保險鋼絲MN,MN隨演員的移動而移動,并始終垂直于地面,其長度自動調(diào)整,設保險鋼絲的長度為w,求w與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•李滄區(qū)一模)【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有。麄冊撛鯓优抨牪拍苁沟每偟呐抨爼r間最短?
假設只有兩個人時,設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊時間最短,拎小桶者應排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規(guī)律總結:
事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調(diào)整這兩個人的位置,同樣介意計算兩個人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時間減少.這樣經(jīng)過一系列調(diào)整后,整個隊伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊時間就最短.
【方法探究】
一般的,對某些設計多個可變對象的數(shù)學問題,先對其少數(shù)對象進行調(diào)整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標,最終使問題得到解決,這種數(shù)學思想就叫做局部調(diào)整法.
【實踐應用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:
(1)先假定N為定點,調(diào)整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點N關于AD的對稱點N'),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點是確定方法找到的)
(2)在考慮點N的位置,使BM+MN最終達到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時BM+MN的最小值是
4
4

【實踐應用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點P、R,于已知格點Q(每個小正方形的頂點叫做格點)構成三角形,則△PQR的最大面積是
2
2
,請在圖4中畫出面積最大時的△PQR的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,
(1)當直線MN繞點C旋轉到圖1的位置時,寫出DE、AD、BE具有的數(shù)量關系,并說明理由;
(2)當直線MN繞點C旋轉到圖2的位置時,寫出DE、AD、BE具有的數(shù)量關系,不必說明理由;
(3)當直線MN繞點C旋轉到圖3的位置時,問DE、AD、BE具有怎樣的數(shù)量關系,不必說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算:
(1)23×24×2.
(2)-a3•(-a)2•(-a)3
(3)mn+1•mn•m2•m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,
(1)當直線MN繞點C旋轉到圖1的位置時,寫出DE、AD、BE具有的數(shù)量關系,并說明理由;
(2)當直線MN繞點C旋轉到圖2的位置時,寫出DE、AD、BE具有的數(shù)量關系,不必說明理由;
(3)當直線MN繞點C旋轉到圖3的位置時,問DE、AD、BE具有怎樣的數(shù)量關系,不必說明理由;

查看答案和解析>>

同步練習冊答案