【題目】同慶中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從軍躍體育用品商店一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買3個(gè)足球和2個(gè)籃球共需310元,購(gòu)買2個(gè)足球和5個(gè)籃球共需500元.

(1)購(gòu)買一個(gè)足球、一個(gè)籃球各需多少元?

(2)根據(jù)同慶中學(xué)的實(shí)際情況,需從軍躍體育用品商店一次性購(gòu)買足球和籃球共96個(gè),要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)5720元,這所中學(xué)最多可以購(gòu)買多少個(gè)籃球?

【答案】(1)足球需要50元,籃球需要80元;(2)30個(gè).

【解析】試題分析:(1)解:設(shè)一個(gè)足球、一個(gè)籃球分別為x、y元,根據(jù)題意得

,解得

一個(gè)足球50元、一個(gè)籃球80元;

2)設(shè)買籃球m個(gè),則買足球(100-m)個(gè),根據(jù)題意得

80m+50(100-m)≤6000,解得x≤,

∵m為整數(shù),∴m最大取33

最多可以買33個(gè)籃球

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算:(π﹣2)0﹣| + |×(﹣ );
(2)化簡(jiǎn):(1+ )÷(2x﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù) (m為常數(shù))的圖象與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)C.以直線x=1為對(duì)稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過(guò)A,C兩點(diǎn),并與x軸的正半軸交于點(diǎn)B.

(1)求m的值及拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)E作直線AC的平行線交x軸于點(diǎn)F.是否存在這樣的點(diǎn)E,使得以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)E的坐標(biāo)及相應(yīng)的平行四邊形的面積;若不存在,請(qǐng)說(shuō)明理由;
(3)若P是拋物線對(duì)稱軸上使△ACP的周長(zhǎng)取得最小值的點(diǎn),過(guò)點(diǎn)P任意作一條與y軸不平行的直線交拋物線于M1(x1 , y1),M2(x2 , y2)兩點(diǎn),試探究 是否為定值,并寫(xiě)出探究過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EABCD的邊CD的中點(diǎn),延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在線段BC上任取一點(diǎn)E,連接DE,作EF⊥DE,交直線AB于點(diǎn)F.
(1)若點(diǎn)F與B重合,求CE的長(zhǎng);
(2)若點(diǎn)F在線段AB上,且AF=CE,求CE的長(zhǎng);
(3)設(shè)CE=x,BF=y,寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式(直接寫(xiě)出結(jié)果可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y=ax2+bx+c(a<0)過(guò)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B(4,0),A為拋物線C的頂點(diǎn).
(1)如圖1,若∠AOB=60°,求拋物線C的解析式;
(2)如圖2,若直線OA的解析式為y=x,將拋物線C繞原點(diǎn)O旋轉(zhuǎn)180°得到拋物線C′,求拋物線C、C′的解析式;
(3)在(2)的條件下,設(shè)A′為拋物線C′的頂點(diǎn),求拋物線C或C′上使得PB=PA′的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知4x2mx+25是完全平方式,則常數(shù)m的值為(  )

A.10B.±10C.20D.±20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程3x+1m+4的解是x2,則m值是(  )

A.2B.5C.3D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三角形A′B′C′是三角形ABC經(jīng)過(guò)平移得到的,A-4-1),B-5,-4),三角形ABC中任意一點(diǎn)Px1,y1)平移后的對(duì)應(yīng)點(diǎn)為P′x1+6y1+4.

1)請(qǐng)寫(xiě)出三角形ABC平移的過(guò)程;

2)分別寫(xiě)出點(diǎn)A′,B′C′的坐標(biāo);

3)求三角形A′B′C′的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案