用等分圓周的方法畫出下列圖案:

圖24-3-5

答案:
解析:

作法:(1)分別以圓的4等分點為圓心,以圓的半徑為半徑,畫4個圓;

(2)分別以圓的6等分點為圓心,以圓的半徑畫弧.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

三等分任意角是三大幾何作圖不能問題之一,古希臘數(shù)學家阿基米德就設計出了一個巧妙的三等分角的方法:在直尺邊緣上添加一點P,命尺端為O(如圖①);設所要三等分的角是∠MCN,以C為圓心,OP為半徑作半圓交給定角的兩邊CM、CN于A、B兩點;移動直尺,使直尺上的O點在AC的延長線上移動,P點在圓周上移動,當直尺正好通過B點時,連OPB,則有∠AOB=
13
∠MCN.這種方法由于在直尺上作了一個記號,不符合尺規(guī)作圖中直尺只能用來連線的規(guī)定,因此還不能算是嚴格意義上的尺規(guī)作圖.
(1)動手實踐操作,用以上方法三等分∠MCN,在圖②中畫出圖形并標明相應字母;
(2)請你就阿基米德的作圖方法給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

用等分圓周的方法畫出下列圖形:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

三等分任意角是三大幾何作圖不能問題之一,古希臘數(shù)學家阿基米德就設計出了一個巧妙的三等分角的方法:在直尺邊緣上添加一點P,命尺端為O(如圖①);設所要三等分的角是∠MCN,以C為圓心,OP為半徑作半圓交給定角的兩邊CM、CN于A、B兩點;移動直尺,使直尺上的O點在AC的延長線上移動,P點在圓周上移動,當直尺正好通過B點時,連OPB,則有∠AOB=數(shù)學公式∠MCN.這種方法由于在直尺上作了一個記號,不符合尺規(guī)作圖中直尺只能用來連線的規(guī)定,因此還不能算是嚴格意義上的尺規(guī)作圖.
(1)動手實踐操作,用以上方法三等分∠MCN,在圖②中畫出圖形并標明相應字母;
(2)請你就阿基米德的作圖方法給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年5月中考數(shù)學模擬試卷(10)(解析版) 題型:解答題

三等分任意角是三大幾何作圖不能問題之一,古希臘數(shù)學家阿基米德就設計出了一個巧妙的三等分角的方法:在直尺邊緣上添加一點P,命尺端為O(如圖①);設所要三等分的角是∠MCN,以C為圓心,OP為半徑作半圓交給定角的兩邊CM、CN于A、B兩點;移動直尺,使直尺上的O點在AC的延長線上移動,P點在圓周上移動,當直尺正好通過B點時,連OPB,則有∠AOB=∠MCN.這種方法由于在直尺上作了一個記號,不符合尺規(guī)作圖中直尺只能用來連線的規(guī)定,因此還不能算是嚴格意義上的尺規(guī)作圖.
(1)動手實踐操作,用以上方法三等分∠MCN,在圖②中畫出圖形并標明相應字母;
(2)請你就阿基米德的作圖方法給出證明.

查看答案和解析>>

同步練習冊答案