(2012•達州)如圖1,在直角坐標系中,已知點A(0,2)、點B(-2,0),過點B和線段OA的中點C作直線BC,以線段BC為邊向上作正方形BCDE.
(1)填空:點D的坐標為
(-1,3)
(-1,3)
,點E的坐標為
(-3,2)
(-3,2)

(2)若拋物線y=ax2+bx+c(a≠0)經(jīng)過A、D、E三點,求該拋物線的解析式.
(3)若正方形和拋物線均以每秒
5
個單位長度的速度沿射線BC同時向上平移,直至正方形的頂點E落在y軸上時,正方形和拋物線均停止運動.
①在運動過程中,設正方形落在y軸右側(cè)部分的面積為s,求s關于平移時間t(秒)的函數(shù)關系式,并寫出相應自變量t的取值范圍.
②運動停止時,求拋物線的頂點坐標.
分析:(1)構(gòu)造全等三角形,由全等三角形對應線段之間的相等關系,求出點D、點E的坐標;
(2)利用待定系數(shù)法求出拋物線的解析式;
(3)本問非常復雜,須小心思考與計算:
①為求s的表達式,需要識別正方形(與拋物線)的運動過程.正方形的平移,從開始到結(jié)束,總共歷時
3
2
秒,期間可以劃分成三個階段:當0<t≤
1
2
時,對應圖(3)a;當
1
2
<t≤1時,對應圖(3)b;當1<t≤
3
2
時,對應圖(3)c.每個階段的表達式不同,請對照圖形認真思考;
②當運動停止時,點E到達y軸,點E(-3,2)運動到點E′(0,
7
2
),可知整條拋物線向右平移了3個單位,向上平移了
3
2
個單位.由此得到平移之后的拋物線解析式,進而求出其頂點坐標.
解答:解:(1)由題意可知:OB=2,OC=1.
如圖(1)所示,過D點作DH⊥y軸于H,過E點作EG⊥x軸于G.
易證△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D(-1,3);
同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E(-3,2).
∴D(-1,3)、E(-3,2).

(2)拋物線經(jīng)過(0,2)、(-1,3)、(-3,2),
c=2
a-b+c=3
9a-3b+c=2
?
解得  
a=-
1
2
b=-
3
2
c=2
,
y=-
1
2
x2-
3
2
x+2


(3)①當點D運動到y(tǒng)軸上時,t=
1
2

當0<t≤
1
2
時,如圖(3)a所示.
設D′C′交y軸于點F
∵tan∠BCO=
OB
OC
=2,又∵∠BCO=∠FCC′
∴tan∠FCC′=2,即
FC′
CC′
=2
∵CC′=
5
t,∴FC′=2
5
t.?
∴S△CC′F?=
1
2
CC′•FC′=
1
2
5
2
5
t=5t2
當點B運動到點C時,t=1.
1
2
<t≤1時,如圖(3)b所示.
設D′E′交y軸于點G,過G作GH⊥B′C′于H.
在Rt△BOC中,BC=
22+12
=
5

∴GH=
5
,∴CH=
1
2
GH=
5
2

∵CC′=
5
t,∴HC′=
5
t-
5
2
,∴GD′=
5
t-
5
2

∴S梯形CC′D′G?=
1
2
5
t-
5
2
+
5
t) 
5
=5t-
5
4

當點E運動到y(tǒng)軸上時,t=
3
2

當1<t≤
3
2
時,如圖(3)c所示
設D′E′、E′B′分別交y軸于點M、N
∵CC′=
5
t,B′C′=
5
,
∴CB′=
5
t-
5
,?∴B′N=2CB′=2
5
t-2
5

∵B′E′=
5
,∴E′N=B′E′-B′N=3
5
-2
5
t
∴E′M=
1
2
E′N=
1
2
3
5
-2
5
t)
∴S△MNE′?=
1
2
3
5
-2
5
t)•
1
2
3
5
-2
5
t)=5t2-15t+
45
4

∴S五邊形B′C′D′MN?=S正方形B′C′D′E′?-S△MNE′?=(
5
)2-
(5t2-15t+
45
4
)=-5t2+15t-
25
4

綜上所述,S與x的函數(shù)關系式為:
當0<t≤
1
2
時,S=5t2
1
2
<t≤1時,S=5t-
5
4

當1<t≤
3
2
時,S=-5t2+15t-
25
4

②當點E運動到點E′時,運動停止.如圖(3)d所示
∵∠CB′E′=∠BOC=90°,∠BCO=∠B′CE′
∴△BOC∽△E′B′C
OB
B′E′
=
BC
E′C

∵OB=2,B′E′=BC=
5

2
5
=
5
E′C

∴CE′=
5
2

∴OE′=OC+CE′=1+
5
2
=
7
2

∴E′(0,
7
2

由點E(-3,2)運動到點E′(0,
7
2
),可知整條拋物線向右平移了3個單位,向上平移了
3
2
個單位.
y=-
1
2
x2-
3
2
x+2
=y=-
1
2
(x+
3
2
)2+
25
8
?
∴原拋物線頂點坐標為(-
3
2
25
8

∴運動停止時,拋物線的頂點坐標為(
3
2
,
37
8
).
點評:本題是非常典型的動線型綜合題,全面考查了初中數(shù)學代數(shù)幾何的多個重要知識點,包括:二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法求解析式、拋物線與幾何變換(平移)、相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)等.難點在于第(3)問,識別正方形和拋物線平移過程的不同階段是關鍵所在.作為中考壓軸題,本題涉及考點眾多,計算復雜,因而難度很大,對考生綜合能力要求很高,具有很好的區(qū)分度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•達州)如圖,⊙O是△ABC的外接圓,連接OB、OC,若OB=BC,則∠BAC等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•達州)如圖,在梯形ABCD中,AD∥BC,E、F分別是AB、CD的中點,則下列結(jié)論:
①EF∥AD;②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正確的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•達州)如右圖,在某十字路口,汽車可直行、可左轉(zhuǎn)、可右轉(zhuǎn).若這三種可能性相同,則兩輛汽車經(jīng)過該路口都向右轉(zhuǎn)的概率為
1
9
1
9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•達州)如圖,C是以AB為直徑的⊙O上一點,過O作OE⊥AC于點E,過點A作⊙O的切線交OE的延長線于點F,連接CF并延長交BA的延長線于點P.
(1)求證:PC是⊙O的切線.
(2)若AF=1,OA=2
2
,求PC的長.

查看答案和解析>>

同步練習冊答案