【題目】校車安全是近幾年社會關(guān)注的熱門話題,其中超載和超速行駛是校車事故的主要原因.小亮和同學(xué)嘗試用自己所學(xué)的三角函數(shù)知識檢測校車是否超速,如下圖,觀測點設(shè)在到白田路的距離為100米的點P處.這時,一輛校車由西向東勻速行駛,測得此校車從A處行駛到B處所用的時間為4秒,且∠APO=60°,∠BPO =45°.
(1)求A、B之間的路程;(參考數(shù)據(jù): , )
(2)請判斷此校車是否超過了白田路每小時60千米的限制速度?
【答案】(1)100()米;(2)超速.
【解析】試題分析:(1)分別在Rt△APO,Rt△BOP中,求得AO、BO的長,從而求得AB的長.已知時間則可以根據(jù)路程公式求得其速度.
(2)將限速與其速度進(jìn)行比較,若大于限速則超速,否則沒有超速.
試題解析:(1)在Rt△BOP中,∠BOP=90°,
∵∠BPO=45°,OP=100,
∴OB=OP=100.
在Rt△AOP中,∠AOP=90°,
∵∠APO=60°,
∴AO=OPtan∠APO.
∴AO=100,
∴AB=100(1)(米);
(2)∵此車的速度=100(1)4=25(1)≈25×0.73=18.25米/秒
60千米/小時=≈16.67米/秒,
18.25米/秒>16.67米/秒,
∴此車超過了白田路每小時60千米的限制速度.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計圖表.
調(diào)查結(jié)果統(tǒng)計表
組別 | 分組(單位:元) | 人數(shù) |
A | 0≤x<30 | 4 |
B | 30≤x<60 | 16 |
C | 60≤x<90 | a |
D | 90≤x<120 | b |
E | x≥120 | 2 |
請根據(jù)以上圖表,解答下列問題:
(1)填空:這次被調(diào)查的同學(xué)共有__人,a+b=__,m=___;
(2)求扇形統(tǒng)計圖中扇形C的圓心角度數(shù);
(3)該校共有學(xué)生1000人,請估計每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,坐標(biāo)原點O為矩形ABCD的對稱中心,頂點A的坐標(biāo)為(1,t),AB∥x軸,矩形A′B′C′D′與矩形ABCD是位似圖形,點O為位似中心,點A′,B′分別是點A,B的對應(yīng)點,.已知關(guān)于x,y的二元一次方程(m,n是實數(shù))無解,在以m,n為坐標(biāo)(記為(m,n)的所有的點中,若有且只有一個點落在矩形A′B′C′D′的邊上,則kt的值等于( )
A. B.1 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價格購物券,可以重新在本商場消費,某顧客剛好消費200元.
(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果等腰三角形一腰上的高與另一腰的夾角45°,那么這個等腰三角形的底角為( )
A. 67°50′B. 22°C. 67.5°D. 22.5°或67.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐示系xOy中,直線與直線交于點A(3,m).
(1)求k,m的値;
(2)己知點P(n,n),過點P作垂直于y軸的直線與直線交于點M,過點P作垂直于x軸的直線與直線交于點N(P與N不重合).若PN≤2PM,結(jié)合圖象,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DB∥AC,且DB=AC,E是AC的中點.
(1)求證:BC=DE;
(2)連接AD、BE,若∠BAC=∠C,求證:四邊形DBEA是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,E為BC邊中點,以AD為直徑的⊙O與AE交于點F.
(1)求證:四邊形AOCE為平行四邊形;
(2)求證:CF與⊙O相切;
(3)若F為AE的中點,求∠ADF的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com