方程  x2的解的個數(shù)為     (      )                             

A.0            B.1                 C.2                 D.1或2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:三點一測叢書九年級數(shù)學(xué)上 題型:013

下面是某同學(xué)在一次測驗中解答的填空題:

①若x2=a2,則x=a;

②方程2x(x-1)=x-1的解為x=0

③某超市一月份的營業(yè)額為200萬元,第一季度的營業(yè)額共1000萬元,如果平均每月增長率為x,則由題意可列出方程200(1+x)2=1000

其中答案完全正確的題目個數(shù)為

[  ]

A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中學(xué)學(xué)習(xí)一本通 數(shù)學(xué)八年級下冊 北師大新課標(biāo) 題型:022

方程的解為x1=2,x2方程的解為x1=3,x2;方程的解為x1=4,x2……請根據(jù)你發(fā)現(xiàn)的規(guī)律,寫出第n個方程________,它的解為x1=________,x2________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省紹興市2012年中考數(shù)學(xué)試卷 題型:044

小明和同桌小聰在課后復(fù)習(xí)時,對課本“目標(biāo)與評定”中的一道思考題,進(jìn)行了認(rèn)真的探索.

[思考題]如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時B到墻C的距離為0.7米,如果梯子的頂端沿墻下滑0.4米,那么點B將向外移動多少米?

(1)請你將小明對“思考題”的解答補充完整:

解:設(shè)點B將向外移動x米,即BB1=x,

則B1C=x+0.7,A1C=AC-AA1

而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B得方程________,解方程得x1________,x2________,∴點B將向外移動________米.

(2)解完“思考題”后,小聰提出了如下兩個問題:

[問題一]在“思考題”中,將“下滑0.4米”改為“下滑0.9米”,那么該題的答案會是0.9米嗎?為什么?

[問題二]在“思考題”中,梯子的頂端從A處沿墻AC下滑的距離與點B向外移動的距離,有可能相等嗎?為什么?

請你解答小聰提出的這兩個問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀,然后解決問題:

已知:一次函數(shù)和反比例函數(shù),求這兩個函數(shù)圖象在同一坐標(biāo)系內(nèi)的交點坐標(biāo)。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解這個方程得:x1=-2  x2=4

經(jīng)檢驗,x1=-2 x2=4是原方程的根

當(dāng)x1=-2,y1=4;x2=4,y2=-2

∴交點坐標(biāo)為(-2,4)和(4,-2)

問題:

1.在同一直角坐標(biāo)系內(nèi),求反比例函數(shù)y=的圖象與一次函數(shù)y=x+3的圖象的交點坐標(biāo);

2.判斷一次函數(shù)y=2x-3的圖象與反比例函數(shù)y=-的圖象在同一直角坐標(biāo)系內(nèi)有無交點,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省九年級上學(xué)期期中數(shù)學(xué)卷 題型:解答題

先閱讀,然后解決問題:

已知:一次函數(shù)和反比例函數(shù),求這兩個函數(shù)圖象在同一坐標(biāo)系內(nèi)的交點坐標(biāo)。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解這個方程得:x1=-2  x2=4

經(jīng)檢驗,x1=-2 x2=4是原方程的根

當(dāng)x1=-2,y1=4;x2=4,y2=-2

∴交點坐標(biāo)為(-2,4)和(4,-2)

問題:

1.在同一直角坐標(biāo)系內(nèi),求反比例函數(shù)y=的圖象與一次函數(shù)y=x+3的圖象的交點坐標(biāo);

2.判斷一次函數(shù)y=2x-3的圖象與反比例函數(shù)y=-的圖象在同一直角坐標(biāo)系內(nèi)有無交點,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案