(1999•西安)如圖,在△ABC中,∠ABC=60°,∠ACB=80°,點(diǎn)O是內(nèi)心,則∠BOC的度數(shù)為    度.
【答案】分析:連接OC,由于BA、BC都與⊙O相切,由切線長定理知∠OBC、∠OCB分別是∠ABC、∠ACB的一半,由此可求得它們的度數(shù)和,再由三角形內(nèi)角和定理即可求得∠BOC的度數(shù).
解答:解:連接OC;
∵BC、BA都與△ABC的內(nèi)切圓相切,
∴∠ABO=∠OBC=∠ABC,∠OCB=∠OCA=∠ACB;
∴∠OBC=30°,∠ACB=40°;
∴∠BOC=180°-∠OBC-∠OCB=110°.
點(diǎn)評(píng):此題主要考查了三角形內(nèi)切圓、切線長定理及三角形內(nèi)角和定理的綜合應(yīng)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《圓》(05)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸過C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸過C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸過C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸過C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年陜西省西安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸過C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案