【題目】在Rt△ABC中,∠ACB=90°,AC=BC=1,將Rt△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,點(diǎn)B經(jīng)過(guò)的路徑為 , 則圖中陰影部分的面積是

【答案】;
【解析】解:∵∠ACB=90°,AC=BC=1, ∴AB= = ,
∴點(diǎn)B經(jīng)過(guò)的路徑長(zhǎng)= =
由圖可知,S陰影=SADE+S扇形ABD﹣SABC
由旋轉(zhuǎn)的性質(zhì)得,SADE=SABC ,
∴S陰影=S扇形ABD= =
故答案為: ;
利用勾股定理列式求出AB,根據(jù)弧長(zhǎng)公式列式計(jì)算即可求出點(diǎn)B經(jīng)過(guò)的路徑長(zhǎng),再根據(jù)S陰影=SADE+S扇形ABD﹣SABC , 再根據(jù)旋轉(zhuǎn)的性質(zhì)可得SADE=SABC , 然后利用扇形的面積公式計(jì)算即可得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4,PC=5,若將△APB繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)后得到△CQB,則∠APB的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菱形ABCD中,∠B=60°,∠MAN=60°,射線(xiàn)AM交直線(xiàn)BC于點(diǎn)E,射線(xiàn)AN交直線(xiàn)CD于點(diǎn)F,連結(jié)EF,請(qǐng)解答下列問(wèn)題:
(1)如圖1,求證:EC+FC=AC;

(2)將∠MAN繞點(diǎn)A旋轉(zhuǎn),如圖2,如圖3,請(qǐng)直接寫(xiě)出線(xiàn)段EC,F(xiàn)C,AC之間的數(shù)量關(guān)系,不需要證明;

(3)若S菱形ABCD=18 ,∠CAE=30°,則CF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A,B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A,C,B的拋物線(xiàn)的一部分C2組合成一條封閉曲線(xiàn),我們把這條封閉曲線(xiàn)成為“蛋線(xiàn)”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線(xiàn)C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線(xiàn)”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,是邊的中點(diǎn),以為腰向外作等腰直角三角形,,連接,交于點(diǎn),交于點(diǎn),連接.

(1),則 ;

(2)求證: ;

(3),則 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

數(shù)學(xué)活動(dòng)課上,老師出了一道作圖問(wèn)題:如圖,已知直線(xiàn)l和直線(xiàn)l外一點(diǎn)P.用直尺和圓規(guī)作直線(xiàn)PQ,使PQ⊥l于點(diǎn)Q.”

小艾的作法如下:

(1)在直線(xiàn)l上任取點(diǎn)A,以A為圓心,AP長(zhǎng)為半徑畫(huà)。

(2)在直線(xiàn)l上任取點(diǎn)B,以B為圓心,BP長(zhǎng)為半徑畫(huà)弧.

(3)兩弧分別交于點(diǎn)P和點(diǎn)M

(4)連接PM,與直線(xiàn)l交于點(diǎn)Q,直線(xiàn)PQ即為所求.

老師表?yè)P(yáng)了小艾的作法是對(duì)的.

請(qǐng)回答:小艾這樣作圖的依據(jù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC和△DEF的頂點(diǎn)都在格點(diǎn)上,結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:
(1)畫(huà)出△ABC向上平移4個(gè)單位長(zhǎng)度后所得到的△A1B1C1
(2)畫(huà)出△DEF繞點(diǎn)F按順時(shí)針?lè)较蛐D(zhuǎn)90°后所得到的△D1E1F1;
(3)求點(diǎn)D在旋轉(zhuǎn)過(guò)程中劃過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑為4,點(diǎn)P是⊙O外的一點(diǎn),PO=10,點(diǎn)A是⊙O上的一個(gè)動(dòng)點(diǎn),連接PA,直線(xiàn)l垂直平分PA,當(dāng)直線(xiàn)l與⊙O相切時(shí),PA的長(zhǎng)度為(
A.10
B.
C.11
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A (﹣4,2),B (﹣2,6),C (0,4)是直角坐標(biāo)系平面上三點(diǎn).
(1)把△ABC向右平移4個(gè)單位再向下平移1個(gè)單位,得到△A1B1C1 , 畫(huà)出平移后的圖形;
(2)若△ABC內(nèi)部有一點(diǎn)P (a,b),則平移后它的對(duì)應(yīng)點(diǎn)Pl的坐標(biāo)為;
(3)以原點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的一半,得到△A2B2C2 , 請(qǐng)?jiān)谒o的坐標(biāo)系中作出所有滿(mǎn)足條件的圖形.

查看答案和解析>>

同步練習(xí)冊(cè)答案