【題目】閱讀下列材料
我們通過下列步驟估計方程2x2+x﹣2=0的根的所在的范圍.
第一步:畫出函數(shù)y=2x2+x﹣2的圖象,發(fā)現(xiàn)圖象是一條連續(xù)不斷的曲線,且與x軸的一個
交點的橫坐標(biāo)在0,1之間.
第二步:因為當(dāng)x=0時,y=﹣2<0;當(dāng)x=1時,y=1>0.
所以可確定方程2x2+x﹣2=0的一個根x1所在的范圍是0<x1<1.
第三步:通過取0和1的平均數(shù)縮小x1所在的范圍;
取x=,因為當(dāng)x=時,y<0,
又因為當(dāng)x=1時,y>0,
所以<x1<1.
(1)請仿照第二步,通過運算,驗證2x2+x﹣2=0的另一個根x2所在范圍是﹣2<x2<﹣1;
(2)在﹣2<x2<﹣1的基礎(chǔ)上,重復(fù)應(yīng)用第三步中取平均數(shù)的方法,將x2所在范圍縮小至m<x2<n,使得n﹣m≤.
【答案】(1)見解析;(2)見解析.
【解析】
(1)計算x=﹣2和x=﹣1時,y的值,確定其x2所在范圍是﹣2<x2<﹣1;
(2)先根據(jù)第三步﹣2和﹣1的平均數(shù)確定x=﹣,計算x=﹣時y的值,得﹣<x2<﹣1,同理再求﹣1和﹣的平均數(shù)為﹣,計算x=﹣時y的值,從而得結(jié)論.
(1)解:因為當(dāng)x=﹣2時,y>0;當(dāng)x=﹣1時,y<0,
所以方程2x2+x﹣2=0的另一個根x2所在的范圍是﹣2<x2<﹣1.…
(2)取x==﹣,因為當(dāng)x=﹣時,y=2×﹣﹣2=1>0,
又因為當(dāng)x=﹣1時,y=﹣1<0,
所以﹣<x2<﹣1,
取x==﹣,因為當(dāng)x=﹣時,y=2×﹣﹣2=﹣<0,
又因為當(dāng)x=﹣時,y>0,
所以﹣<x2<﹣,
又因為﹣﹣(﹣)=,
所以﹣<x2<﹣即為所求x2 的范圍.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天貓店銷售某種規(guī)格學(xué)生軟式排球,成本為每個30元.以往銷售大數(shù)據(jù)分析表明:當(dāng)每只售價為40元時,平均每月售出600個;若售價每上漲1元,其月銷售量就減少20個,若售價每下降1元,其月銷售量就增加200個.
(1)若售價上漲m元,每月能售出 個排球(用m的代數(shù)式表示).
(2)為迎接“雙十一”,該天貓店在10月底備貨1300個該規(guī)格的排球,并決定整個11月份進行降價促銷,問售價定為多少元時,能使11月份這種規(guī)格排球獲利恰好為8400元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,把矩形OCBA繞點C順時針旋轉(zhuǎn)α角,得到矩形FCDE,設(shè)FC與AB交于點H,且A(0,4),C(6,0).
(1)當(dāng)α=45°時,求H點的坐標(biāo).
(2)當(dāng)α=60°時,ΔCBD是什么特殊的三角形?說明理由.
(3)當(dāng)AH=HC時,求直線HC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點D在⊙O外,∠BAD的平分線與⊙O交于點C,連接BC、CD,且∠D=90°.
(1)求證:CD是⊙O的切線;
(2)若∠DCA=60°,BC=3,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=|a|x2+bx+c的圖象經(jīng)過A(m,n)、B(0,y1)、C(3-m,n)、D(, y2)、E(2,y3),則y1、y2、y3的大小關(guān)系是( ).
A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小芳做一個“配色”的游戲.右圖是兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并涂上圖中所示的顏色.同時轉(zhuǎn)動兩個轉(zhuǎn)盤,如果轉(zhuǎn)盤A轉(zhuǎn)出了紅色,轉(zhuǎn)盤B轉(zhuǎn)出了藍色,或者轉(zhuǎn)盤A轉(zhuǎn)出了藍色,轉(zhuǎn)盤B轉(zhuǎn)出了紅色,則紅色和藍色在一起配成紫色,這種情況下小芳獲勝;同樣,藍色和黃色在一起配成綠色,這種情況下小明獲勝;在其它情況下,則小明、小芳不分勝負(fù).
(1)利用列表或樹狀圖的方法表示此游戲所有可能出現(xiàn)的結(jié)果;
(2)此游戲的規(guī)則,對小明、小芳公平嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點A1,A2,A3,…和點C1,C2,C3,…分別在直線 (k>0)和x軸上,已知點B1(1,1),B2(3,2),則Bn的坐標(biāo)是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90,AB=10cm,AC=8cm,點P從點A開始出發(fā)向點C以2cm/s的速度移動,點Q從B點出發(fā)向點C以1cm/s的速度移動,若P、Q分別同時從A,B出發(fā),幾秒后四邊形APQB是△ABC面積的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A的坐標(biāo)是(﹣1,0),點B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點C,連接AC、BC,過A、B、C三點作拋物線.
(1)求點C的坐標(biāo)及拋物線的解析式;
(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,求點D的坐標(biāo);并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD,若存在,請求出點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com