已知:在△ABC和△XYZ中,∠A=40°,∠Y+∠Z=95°,將△XYZ如圖擺放,使得∠X的兩條邊分別經(jīng)過點(diǎn)B和點(diǎn)C.
(1)當(dāng)將△XYZ如圖1擺放時(shí),則∠ABX+∠ACX=______度;
(2)當(dāng)將△XYZ如圖2擺放時(shí),請(qǐng)求出∠ABX+∠ACX的度數(shù),并說(shuō)明理由;
(3)能否將△XYZ擺放到某個(gè)位置時(shí),使得BX、CX同時(shí)平分∠ABC和∠ACB?請(qǐng)直接寫出你的結(jié)論:______.
(1)在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=40°
∴∠ABC+∠ACB=180°-40°=140°
在△BCX中,∠X+∠BCX+∠CBX=180°
∴∠BCX+∠CBX=180°-∠X
在△XYZ中,∠X+∠Y+∠Z=180°
∴∠Y+∠Z=180°-∠X
∴∠CBX+∠BCX=∠Y+∠Z=95°
∴∠ABX+∠ACX=∠ABC+∠CBX+∠ACB+∠BCX=140°+95°=235°;

(2)∠ABX+∠ACX=45度.理由如下:
∵∠Y+∠Z=95°
∴∠X=180°-(∠Y+∠Z)=85°
∴∠ABX+∠ACX=180°-∠A-∠XBC-∠XCB
=180°-40°-(180°-85°)
=45°;

(3)不能.假設(shè)能將△XYZ擺放到某個(gè)位置時(shí),使得BX、CX同時(shí)平分∠ABC和∠ACB.則∠CBX+∠BCX=∠ABX+∠ACX=95°,那么∠ABC+∠ACB=190°,與三角形內(nèi)角和定理矛盾,所以不能.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知:如圖,F(xiàn)DBE,則∠1+∠2-∠A=( 。
A.90°B.135°C.150°D.180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示.∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED=∠FEG.求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線MANB,∠A=70°,∠B=40°,則∠P=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,F(xiàn)EON,OE平分∠MON,∠FEO=28°,則∠MFE=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,在△ABC中,CH是外角∠ACD的平分線,BH是∠ABC的平分線.
求證:∠A=2∠H.
證明:∵∠ACD是△ABC的一個(gè)外角,
∴∠ACD=∠ABC+∠A(______)
∠2是△BCH的一個(gè)外角,
∠2=∠1+∠H(______)
∵CH是外角∠ACD的平分線,BH是∠ABC的平分線
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ACD(______)
∴∠A=∠ACD-∠ABC=2(∠2-∠1)(等式的性質(zhì))
而∠H=∠2-∠1(等式的性質(zhì))
∴∠A=2∠H(______)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,ABEF,問∠A、∠C、∠1有何等量關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,D是△ABC的角平分線BD和CD的交點(diǎn),若∠A=50°,則∠D=( 。
A.120°B.130°C.115°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,∠1=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案