如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,EF過點(diǎn)O,與AD交于點(diǎn)E,與BC交于點(diǎn)F,且AD=5,AB=4,OE=1.5,則四邊形EFCD的周長(zhǎng)為
12
12
分析:根據(jù)平行四邊形的對(duì)角線互相平分可得OA=OC,然后利用“角邊角”證明△AOE和△COF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=CF,OE=OF,再根據(jù)四邊形的周長(zhǎng)定義列式代入數(shù)據(jù)計(jì)算即可得解.
解答:解:在?ABCD中,OA=OC,AD∥BC,
∴∠OAE=∠OCF,
在△AOE和△COF中,
∠OAE=∠OCF
OA=OC
∠AOE=∠COF(對(duì)頂角相等)
,
∴△AOE≌△COF(ASA),
∴AE=CF,OE=OF,
四邊形EFCD的周長(zhǎng)=EF+CF+CD+DE=2OE+AE+DE+CD=2OE+AD+AB,
∵AD=5,AB=4,OE=1.5,
∴四邊形EFCD的周長(zhǎng)=2×1.5+5+4=3+5+4=12.
故答案為:12.
點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),根據(jù)平行四邊形的對(duì)邊平行,對(duì)角線互相平分得到三角形全等的條件是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關(guān)系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊(cè)答案