25、如圖,OM是∠AOB的平分線,MA⊥OA,交OA于A,MB⊥OB,交OB于B,如果∠AOB=120°,則∠AMO=
30
度,∠BMO=
30
度,∠AMB=
60
度.
分析:由已知條件結(jié)合角平分線的性質(zhì)的逆定理可知OM平分∠AOB,平分∠AMB,由,∠AOB=120°可得∠AOM=60°∠AMO=30°進(jìn)而可得本題答案.
解答:解:∠AOB=120
OM是∠AOB的平分線
∴∠AOM=60°
MA⊥OA
∴∠AMO=30°=∠BMO
∠AMB=∠AMO+BMO=60°.
故填30,30,60.
點(diǎn)評(píng):本題考查了角平分線的性質(zhì);利用角的平分線上的點(diǎn)到角的兩邊的距離相等證明兩三角形全等即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,OM是∠AOB的平分線,射線OC在∠BOM內(nèi)部,ON是∠BOC的平分線,已知∠AOC=80°,求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,OM是∠AOB的平分線,射線OC在∠BOM內(nèi)部,ON是∠BOC的平分線,已知∠AOC=80°,那么∠MON的大小等于
40
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OM是∠AOB平分線,MA⊥OA,MB⊥OB,A、B是垂足,則OA=
OB
OB
;設(shè)∠AOB=2a,則∠AMO=
90°-a
90°-a
(填含a 的代數(shù)式),∠AMO與∠BMO=
相等
相等
(填“相等”或“不相等”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OM是∠AOB的平分線,OP是∠MOB內(nèi)的一條射線.已知∠AOP比∠BOP大30°,則∠MOP的度數(shù)是
15°
15°

查看答案和解析>>

同步練習(xí)冊(cè)答案