【題目】已知:梯形ABCD中,AD//BC,ABBC,AD=3,AB=6,DFDC分別交射線AB、射線CB于點E、F.

1)當(dāng)點E為邊AB的中點時(如圖1),求BC的長;

2)當(dāng)點E在邊AB上時(如圖2),聯(lián)結(jié)CE,試問:∠DCE的大小是否確定?若確定,請求出∠DCE的正切值;若不確定,則設(shè)AE=x,∠DCE的正切值為y,請求出y關(guān)于x的函數(shù)解析式,并寫出定義域;

3)當(dāng)AEF的面積為3時,求DCE的面積.

【答案】19;(2DCE的大小確定,.3)當(dāng)AEF的面積為3時,DCE的面積為2573.

【解析】

1)根據(jù)AD//BC EAB中點,得出 AD BF,DE EF,再根據(jù)AD3,AB6,求出BF3,再求出DF的值,最后求出CF即可;

2)作CHADAD的延長線于點H,再得出AEDHDC再根據(jù)ABAD,CHADAD//BC,得出CH AB6,然后得出∠DCE的正切值;

3)當(dāng)點E在邊AB上,設(shè)AEx,根據(jù)AEF的面積為3得出x的值,再求出DE,DC的值,然后可以得出DCE的面積;當(dāng)點E在邊AB延長線上,設(shè)AEy,根據(jù)AEF的面積為3,得出,聯(lián)結(jié)CE,作CHADAD的延長線于點H得出DC,DE的值即可.

解:(1)∵AD//BC,∴.EAB中點,∴AEBE. AD BF,DE EF.

AD3,AB6,∴BF3,BE3. BFBE.

ABBC,∴∠F45°EF.

DF2EF.

DFDC,∠F45°,∴CF12.

BC .

2)∠DCE的大小確定,.

CHADAD的延長線于點H,∴∠HCDHDC90°.

DFDC,∴∠ADEHDC90°. ∴∠HCD=∠ADE.

又∵ABAD,∴∠A=∠CHD. AEDHDC.

.

ABAD,CHADAD//BC,∴CH AB6.

AD3,CH6,∴..

3)當(dāng)點E在邊AB上,設(shè)AEx,

AD//BC,∴,即..

∵△AEF的面積為3,∴.

.

AD3,ABAD,∴DE5. ,∴DC10.

DFDC,∴.

當(dāng)點E在邊AB延長線上,設(shè)AEy,

AD//BC,∴,即..

∵△AEF的面積為3,∴..

AD3,ABAD,∴DE.

聯(lián)結(jié)CE,作CHADAD的延長線于點H,同(1)可得.

DC

DFDC,∴.

綜上,當(dāng)AEF的面積為3時,DCE的面積為2573.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是( )

A. 賽跑中,兔子共休息了50分鐘

B. 烏龜在這次比賽中的平均速度是0.1米/分鐘

C. 兔子比烏龜早到達(dá)終點10分鐘

D. 烏龜追上兔子用了20分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為弓形AB的弦,AB2,弓形所在圓⊙O的半徑為2,點P為弧AB上動點,點I為△PAB的內(nèi)心,當(dāng)點P從點A向點B運動時,點I移動的路徑長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,DC6cm,在DC上存在一點E,沿直線AEADE折疊,使點D恰好落在BC邊上的點F處,若ABF的面積為24cm2,那么折疊的ADE的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊ABC,以AB為直徑的圓與BC邊交于點D,過點DDFAC,垂足為F,過點FFGAB,垂足為G,連結(jié)GD

1)求證:DF是⊙O的切線;

2)若AB12,求FG的長;

3)在(2)問條件下,求點DFG的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)C為線段AB的中點,四邊形BCDE是以BC為一邊的正方形.以B為圓心,BD長為半徑的⊙BAB相交于F點,延長EB交⊙BG點,連接DG交于ABQ點,連接AD.

求證:(1)AD是⊙B的切線;(2)AD=AQ;(3)BC2=CFEG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上.已知α=36°,求長方形卡片的周長.

(精確到1mm,參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標(biāo);

3)在對稱軸上是否存在一點M,使ANM的周長最。舸嬖,請求出M點的坐標(biāo)和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市智慧閱讀活動正如火如茶地進(jìn)行.某班學(xué)習(xí)委員為了解11月份全班同學(xué)課外閱讀的情況,調(diào)查了全班同學(xué)11月份讀書的冊數(shù),并根據(jù)調(diào)查結(jié)果繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:

1)扇形統(tǒng)計圖中“3冊”部分所對應(yīng)的圓心角的度數(shù)是 ,并把條形統(tǒng)計圖補(bǔ)充完整;

2)該班的學(xué)習(xí)委員11月份的讀書冊數(shù)為4冊,若該班的班主任從11月份讀書4冊的學(xué)生中隨機(jī)抽取兩名同學(xué)參加學(xué)校舉行的知識競賽,請用列表法或畫樹狀圖求恰好有一名同學(xué)是學(xué)習(xí)委員的概率.

查看答案和解析>>

同步練習(xí)冊答案