(2002•甘肅)反比例函數(shù)的圖象經(jīng)過點(-2,4),其解析式為   
【答案】分析:因為函數(shù)經(jīng)過一定點,將此點坐標代入函數(shù)解析式y(tǒng)=(k≠0)即可求得k的值.
解答:解:設(shè)反比例函數(shù)的解析式為y=(k≠0),由圖象可知,函數(shù)經(jīng)過點P(-2,4),
∴4=-,得k=-8,
∴反比例函數(shù)解析式為y=-
故答案為:y=-
點評:此題比較簡單,考查的是用待定系數(shù)法求反比例函數(shù)的解析式,是中學(xué)階段的重點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2002•西藏)反比例函數(shù)y=
k
x
的圖象過點(-2,3),那么k的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

(2002•甘肅)(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點D在AB上運動,但與A、B不重合,過B、C、D三點的圓交AC于E,連接DE.
(1)設(shè)AD=x,CE=y,求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當AD長為關(guān)于x的方程2x2+(4m+1)x+2m=0的一個整數(shù)根時,求m的值.

(II)如圖,在直角坐標系xOy中,以點A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點P,B點在x軸正半軸上,過P點作兩圓的公切線DP交y軸于D,交x軸于C,
(1)設(shè)⊙A的半徑為r1,⊙B的半徑為r2,且r2=r1,求公切線DP的長及直線DP的函數(shù)解析式,
(2)若⊙A的位置、大小不變,點B在X軸正半軸上移動,⊙B與⊙A始終外切.過D作⊙B的切線DE,E為切點.當DE=4時,B點在什么位置?從解答中能發(fā)現(xiàn)什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:填空題

(2002•甘肅)反比例函數(shù)的圖象經(jīng)過點(-2,4),其解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2002•甘肅)(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點D在AB上運動,但與A、B不重合,過B、C、D三點的圓交AC于E,連接DE.
(1)設(shè)AD=x,CE=y,求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當AD長為關(guān)于x的方程2x2+(4m+1)x+2m=0的一個整數(shù)根時,求m的值.

(II)如圖,在直角坐標系xOy中,以點A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點P,B點在x軸正半軸上,過P點作兩圓的公切線DP交y軸于D,交x軸于C,
(1)設(shè)⊙A的半徑為r1,⊙B的半徑為r2,且r2=r1,求公切線DP的長及直線DP的函數(shù)解析式,
(2)若⊙A的位置、大小不變,點B在X軸正半軸上移動,⊙B與⊙A始終外切.過D作⊙B的切線DE,E為切點.當DE=4時,B點在什么位置?從解答中能發(fā)現(xiàn)什么?

查看答案和解析>>

同步練習(xí)冊答案