(2007•西城區(qū)二模)如圖,在直角坐標(biāo)系內(nèi)有點(diǎn)P(1,1)、點(diǎn)C(1,3)和二次函數(shù)y=-x2
(1)若二次函數(shù)y=-x2的圖象經(jīng)過(guò)平移后以C為頂點(diǎn),請(qǐng)寫(xiě)出平移后的拋物線的解析式及一種平移的方法;
(2)若(1)中平移后的拋物線與x軸交于點(diǎn)A、點(diǎn)B(A點(diǎn)在B點(diǎn)的左側(cè)),求cos∠PBO的值;
(3)在拋物線上是否存在一點(diǎn)D,使線段OC與PD互相平分?若存在,求出D點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
分析:(1)根據(jù)平移只改變圖形的位置,不改變圖形的形狀與大小,利用頂點(diǎn)式解析式寫(xiě)出平移后的拋物線解析式即可,根據(jù)頂點(diǎn)從坐標(biāo)原點(diǎn)到點(diǎn)C寫(xiě)出平移方法;
(2)令y=0,求出點(diǎn)A、B的橫坐標(biāo),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,從而求出BM、PM的長(zhǎng)度,再根據(jù)勾股定理求出PB的長(zhǎng)度,最后根據(jù)余弦的定義列式求解即可;
(3)存在.根據(jù)互相垂直平分的四邊形是平行四邊形,可以證明當(dāng)點(diǎn)D為拋物線與y軸的交點(diǎn)時(shí),四邊形OPCD正好是平行四邊形.
解答:解:(1)平移后以C為頂點(diǎn)的點(diǎn)拋物線解析式為y=-(x-1)2+3,
所以一種移動(dòng)方式是將y=-x2向右平移一個(gè)單位長(zhǎng)度,再向上平移三個(gè)單位長(zhǎng)度;

(2)由(1)知移動(dòng)后的拋物線解析式為y=-(x-1)2+3=x2+2x+2.
令-x2+2x+2=0,
解出x1=1-
3
,x2=1+
3

連接PB,過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,
∴BM=
3
,PM=1,
根據(jù)勾股定理,PB=
BM2+PM2
=
3
2
+12
=2,
∴cos∠PBO=
BM
PB
=
3
2
;

(3)存在這樣的點(diǎn)D.
理由如下:欲使OC與PD互相平分,
只要使四邊形OPCD為平行四邊形,
由題設(shè)知,PC∥OD,
又PC=2,PC∥y軸,
∵點(diǎn)D在y軸上,
∴OD=2,
即D(0,2).
又點(diǎn)D(0,2)在拋物線y=-x2+2x+2上,
故存在點(diǎn)D(0,2),
即OD與PC平行且相等,使線段OC與PD相互平分.
點(diǎn)評(píng):本題綜合考查了二次函數(shù)的問(wèn)題,有平移變換的性質(zhì),拋物線與y軸的交點(diǎn)問(wèn)題,勾股定理,余弦的定義,平行四邊形的性質(zhì),綜合性較強(qiáng)但難度不大,計(jì)算后利用數(shù)據(jù)的關(guān)系得解比較巧妙.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•西城區(qū)二模)已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:
①a+b+c>0;②b2-4ac>0;③abc<0;④2a+b>0
其中正確結(jié)論的個(gè)數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•西城區(qū)二模)若等邊△ABC的邊長(zhǎng)為6cm長(zhǎng),內(nèi)切圓O分別切三邊于D、E、F,則陰影部分的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•西城區(qū)二模)如圖,在Rt△ABC中,斜邊AB=8,∠B=60°,將△ABC繞點(diǎn)B旋轉(zhuǎn)60°,頂點(diǎn)C運(yùn)動(dòng)的路線長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•西城區(qū)二模)如圖,已知AD∥EG∥BC,且AC∥EF,記∠EFB=α,則圖中等于α的角(不包含∠EFB)的個(gè)數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•西城區(qū)二模)估算
24
+3的值( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案