【題目】如圖,已知一次函數(shù)y1kxb與反比例函數(shù)y2 圖象在第一、第三象限分別交于A3,4),Ba,-2)兩點,直線ABy軸,x軸分別交于C,D兩點.

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)比較線段AD、BC大小,并說明理由.

【答案】1y1=+2,y2=;(2AD=BC,理由見解析

【解析】

1)把A3,4)代入y2=,即可求出m,從而算出B點坐標,即可求出一次函數(shù)的解析式;(2)通過一次函數(shù)解析式,分別算出與x軸,y軸的交點坐標,根據(jù)距離公式比較線段AD、BC大小即可.

1)將A34)代人y2=,可得m=12,∴y2=,

Ba,-2)代人y2=中,可得a=6,∴B-6,-2),

A34),B(-6,-2)分別代人y1=kx+b中,可得

解得k=,b=2,∴y1=+2,y2=;

2AD=BC,理由為:

CDy=+2y軸,x軸的交點,

x=0時,y=2,令y=0時,x=-3

C02),D(-3,0),

∴根據(jù)兩點之間距離公式得:AD=2BC=2,則AD=BC.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC5,BC6,將ABC繞點B逆時針旋轉60°得到A'BC,連接A'C,則A'C的長為( 。

A. 6B. 4+2C. 4+3D. 2+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC,AB=AC=5,BC=6,D,E分別是邊AB,AC上的兩個動點(D不與A,B重合),且保持DEBC,以DE為邊,在點A的異側作正方形DEFG.

(1)FGBC重合時,求正方形DEFG的邊長;

(2)AD=x,△ABC與正方形DEFG重疊部分的面積為y,試求y關于x的函數(shù)關系式,并寫出x的取值范圍;

(3)當△BDG是等腰三角形時,請直接寫出AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x22x+3的圖象與x軸交于A.B兩點(A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

(1)求點A. B.C的坐標;

(2)判斷以點A、CD為頂點的三角形的形狀,并說明理由;

(3)M(m,0)為線段AB上一點(M不與點A.B重合),過點Mx軸的垂線,與直線AC交于點E,與拋物線交于點P,過點PPQAB交拋物線于點Q,過點QQNx軸于點N,可得矩形PQNM.如圖,點P在點Q左邊,試用含m的式子表示矩形PQNM的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P2,3)在反比例函數(shù)y k≠0)的圖象上

1)當y=-3時,求x的值;

2)當1x3時,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)y=的圖象如圖所示,A,P為該圖象上的點,且關于原點成中心對稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點B.若△PAB的面積大于12,則關于x的方程(a-1)x2-x+=0的根的情況是________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)和一次函數(shù),其中一次

函數(shù)圖象經(jīng)過(a,b)與(a+1,b+k)兩點.

(1) 求反比例函數(shù)的解析式.

(2) 如圖,已知點A是第一象限內(nèi)上述兩個函數(shù)圖象的交點,A點坐標.

(3) 利用(2)的結果,請問:X軸上是否存在點P,使△AOP為等腰三角形?若存在,把符合條件的P點坐標都求出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB經(jīng)過x軸上的點A(2,0),且與拋物線相交于B、C兩點,已知B點坐標為(1,1) .

(1)求直線和拋物線的解析式;

(2)如果D為拋物線上一點,使得△AOD與△OBC的面積相等,求D點坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD,,DAB=60°,點EAD邊的中點MAB邊上一動點不與點A重合,延長ME交射線CD于點N,連接MD、AN

求證:四邊形AMDN是平行四邊形;

AM的值為______時,四邊形AMDN是菱形并說明理由.

查看答案和解析>>

同步練習冊答案