(2005•三明)已知二次函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)的圖象與x軸相交于A(x1,0),B(x2,0)兩點(diǎn),且A,B兩點(diǎn)間的距離為d,例如,通過研究其中一個(gè)函數(shù)y=x2-5x+6及圖象(如圖),可得出表中第2行的相關(guān)數(shù)據(jù).
(1)在表內(nèi)的空格中填上正確的數(shù);
(2)根據(jù)上述表內(nèi)d與△的值,猜想它們之間有什么關(guān)系?再舉一個(gè)符合條件的二次函數(shù),驗(yàn)證你的猜想;
(3)對(duì)于函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)證明你的猜想.聰明的小伙伴:你能再給出一種不同于(3)的正確證明嗎?我們將對(duì)你的出色表現(xiàn)另外獎(jiǎng)勵(lì)3分.
y=x2+px+q x1x2 
y=x2-5x+6 -5 6 1 1
y=x2--      
y=x2+x-2  -2 -2  3


【答案】分析:(1)p為一次項(xiàng)系數(shù);q為二次函數(shù)的常數(shù)項(xiàng);△為b2-4ac;一根為常數(shù)項(xiàng)÷另一根;d為較大根于較小根之差;
(2)代入相關(guān)值后可得相關(guān)量之間的關(guān)系;
(3)令y=0,得出x1+x2=-p,x1•x2=q.繼而推出d2=(|x1-x2|)2=△
解答:解:(1)易得第三行q=0,x1=0,d=;第四行為p=1,△=9,x2=1;

(2)猜想:d2=△.
例如:y=x2-x-2中;p=-1,q=-2,△=9;
由x2-x-2=0得x1=2,x2=-1,d=3,d2=9,
∴d2=△;

(3)證明.令y=0,得x2+px+q=0,
∵△>0
設(shè)x2+px+q=0的兩根為x1,x2,
則x1+x2=-p,x1•x2=q,
d2=(|x1-x2|)2=(x1-x22=(x1+x22-4x1•x2
=(-p)2-4q=p2-4q=△,
點(diǎn)評(píng):本題考查二次函數(shù)的性質(zhì)的綜合運(yùn)用,需注意可根據(jù)具體的數(shù)值得到相應(yīng)的量之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(02)(解析版) 題型:填空題

(2005•三明)已知點(diǎn)P1(a,3)與P2(-2,-3)關(guān)于原點(diǎn)對(duì)稱,則a=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省三明市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•三明)已知二次函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)的圖象與x軸相交于A(x1,0),B(x2,0)兩點(diǎn),且A,B兩點(diǎn)間的距離為d,例如,通過研究其中一個(gè)函數(shù)y=x2-5x+6及圖象(如圖),可得出表中第2行的相關(guān)數(shù)據(jù).
(1)在表內(nèi)的空格中填上正確的數(shù);
(2)根據(jù)上述表內(nèi)d與△的值,猜想它們之間有什么關(guān)系?再舉一個(gè)符合條件的二次函數(shù),驗(yàn)證你的猜想;
(3)對(duì)于函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)證明你的猜想.聰明的小伙伴:你能再給出一種不同于(3)的正確證明嗎?我們將對(duì)你的出色表現(xiàn)另外獎(jiǎng)勵(lì)3分.
y=x2+px+q x1x2 
y=x2-5x+6 -5 6 1 1
y=x2--      
y=x2+x-2  -2 -2  3


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省三明市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•三明)已知:如圖,∠1=∠2,BD=BC.求證:∠3=∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省三明市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2005•三明)已知不等式組的解集如圖所示,則不等式組的整數(shù)解為   

查看答案和解析>>

同步練習(xí)冊(cè)答案