【題目】如圖,在△ABC中,∠ACB=90°,AC=BC , BE⊥CE于點E . AD⊥CE于點D.求證:△BEC≌△CDA.

【答案】證明:∵BE⊥CE于E , AD⊥CE于D , ∴∠BEC=∠CDE=90°,在Rt△BEC中,∠BCE+∠CBE=90°,在Rt△BCA中,∠BCE+∠ACD=90°,∴∠CBE=∠ACD , 在△BEC和△CDA中,∠BEC=∠CDA , ∠CBE=∠ACD , BC=AC , ∴△BEC≌△CDA(AAS) .
【解析】證明:∵BE⊥CE于E , AD⊥CE于D , ∴∠BEC=∠CDE=90°,在Rt△BEC中,∠BCE+∠CBE=90° , 在Rt△BCA中 , ∠BCE+∠ACD=90° , ∴∠CBE=∠ACD ,
在△BEC和△CDA中,∠BEC=∠CDA , ∠CBE=∠ACD , BC=AC , ∴△BEC≌△CDA(AAS) .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的周長為16,AC、BD相交于點O,OE⊥AC交AD于E,則△DCE的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩點E(x1,y1),F(xiàn)(x2,y2),如果x1+x2=2x1,y1+y2=0,那么E,F(xiàn)兩點關(guān)于_______對稱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程kx2+4x+10有兩個實數(shù)根,則k的取值范圍是( 。

A. k4B. k≥4C. k≤4D. k≤4k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天早晨的氣溫是﹣2,半夜又下降了1℃,則半夜的氣溫是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點M是二次函數(shù)(a>0)圖象上的一點,點F的坐標(biāo)為(0,),直角坐標(biāo)系中的坐標(biāo)原點O與點M,F(xiàn)在同一個圓上,圓心Q的縱坐標(biāo)為

(1)求a的值;

(2)當(dāng)O,Q,M三點在同一條直線上時,求點M和點Q的坐標(biāo);

(3)當(dāng)點M在第一象限時,過點M作MN⊥x軸,垂足為點N,求證:MF=MN+OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:

(1)請計算第幾天該商品單價為25元/件?

(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;

(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個算式:(1)(x44=x4+4=x8;(2)[(y22]2=y2×2×2=y8;(3)(﹣y23=y6;(4)[(﹣x)3]2=(﹣x)6=x6
其中正確的有(
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

同步練習(xí)冊答案