如圖,B、C是雙曲線y=數(shù)學(xué)公式在第一象限的兩點(diǎn),且B的橫坐標(biāo)是m,C點(diǎn)的橫坐標(biāo)是3m,△COB的面積是6,則k=________.


分析:根據(jù)B的橫坐標(biāo)是m,C點(diǎn)的橫坐標(biāo)是3m,作出平行線,利用同高三角形面積關(guān)系,得出,△ABO和△COB的面積,再利用反比例函數(shù)的性質(zhì)求出k的值即可.
解答:解:過點(diǎn)B作BE⊥x軸于E,CF⊥x軸于F,
∵B、C是雙曲線y=在第一象限的兩點(diǎn),且B的橫坐標(biāo)是m,C點(diǎn)的橫坐標(biāo)是3m,
∴點(diǎn)B為(m,),點(diǎn)C為(3m,),
∴S△OBE=S△COF,
∴S梯形BEFC=S△COB
∵S梯形BEFC=×(+)×(3m-m)=6,
解得:k=
故答案為:
點(diǎn)評(píng):此題主要考查了反比例函數(shù)的應(yīng)用,利用三角形面積以及三角形相似求出△ABO和△COB的面積,以及分割三角形是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,A、B是雙曲線y=
k
x
(k>0)
上的點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)分別是a、2a,線段AB的延長(zhǎng)線交x軸于點(diǎn)C,若S△AOC=6.則k的值為( 。
A、1B、2C、4D、無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,C,D是雙曲線y=
m
x
在第1象限內(nèi)的分支上的兩點(diǎn),直線CD分別交x軸、y軸于A、B兩點(diǎn),設(shè)C、D坐標(biāo)(x1,y1),(x2,y2),連接OC、OD,求證:y1<OC<y1+
m
y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,A、B是雙曲線 y=
k
x
(k>0)上的點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)分別是a、2a,線段AB的延長(zhǎng)線交x軸于點(diǎn)C,若S△AOC=9.則k的值為(  )
A、2B、3C、6D、9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•沙縣質(zhì)檢)如圖,A、B兩點(diǎn)是雙曲線的一個(gè)分支上的兩點(diǎn),點(diǎn)B在點(diǎn)A右側(cè),并且B的坐標(biāo)為(a,b),則a的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知C、D是雙曲線y=
m
x
在第一象限內(nèi)的分支上兩點(diǎn),直線CD分別交x軸、y軸于A、B,CG⊥x軸于G,DH⊥x軸于H,
OG
GC
=
DH
OH
=
1
4
,OC=
17

(1)求m的值和D點(diǎn)的坐標(biāo);
(2)在雙曲線第一象限內(nèi)的分支上是否有一點(diǎn)P,使得S△POC=S△POD?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
(3)如圖2,點(diǎn)K是雙曲線y=
m
x
在第三象限內(nèi)的分支上的一動(dòng)點(diǎn),過點(diǎn)K作KM⊥y軸于M,OE平分∠KOA,KE⊥OE,KE交y軸于N,直線ME交x軸于F,①
OF2+MN2
ON2
,②
OF+MN
ON
,有一個(gè)為定值,請(qǐng)你選擇正確結(jié)論并求出這個(gè)定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案