在△ABC中,∠C=90°,DE垂直平分斜邊AB,分別交AB、BC于D、E,若∠CAE=∠B-30°,則∠AEB的度數(shù)為________.

100°
分析:先根據(jù)DE垂直平分斜邊AB可得到∠B=∠EAB,由于∠CAE=∠B-30°,所以∠CAE+∠EAB+∠B=180°-∠C,
即3∠B-30°=90°,故∠B=∠EAB=40°,由三角形內(nèi)角和定理即可求出∠AEB的度數(shù).
解答:∵DE垂直平分斜邊AB,
∴∠B=∠EAB,
∵∠CAE=∠B-30°,
∴∠CAE+∠EAB+∠B=180°-∠C,
即3∠B-30°=90°,
∴∠B=∠EAB=40°,
∴∠AEB=180°-∠B-∠EAB=180°-40°-40°=100°.
故答案為:100°.
點(diǎn)評(píng):本題考查的是線段垂直平分線的性質(zhì)及三角形內(nèi)角和定理,屬較簡單題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點(diǎn)O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點(diǎn)F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點(diǎn)D,交AC于點(diǎn)E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為( 。
A、
2
B、
3
C、2
D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案