【題目】已知△ABC中,AB=17cm,AC=10cm,邊上的高AD=8cm,則邊的長(zhǎng)為(

A.B.C.D.

【答案】B

【解析】

高線(xiàn)AD可能在三角形的內(nèi)部也可能在三角形的外部,分兩種情況進(jìn)行討論,分別依據(jù)勾股定理即可求解.

解:分兩種情況:

①如圖

RtABD中,∠ADB=90°,由勾股定理得,AB2=AD2+BD2

172=82+BD2,解得BD=15cm,

RtACD中,∠ADC=90°,由勾股定理得,AC2=AD2+CD2

102=82+CD2,解得CD=6cm,

BC=BD+CD=15+6=21cm

②如圖

由勾股定理求得BD=15cm,CD=6cm, BC=BD-CD=15-6=9cm.

BC的長(zhǎng)為21cm9cm.

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,等腰三角形紙片,AB=AC,BAC=30°,按圖2將紙片沿DE折疊,使得點(diǎn)A與點(diǎn)B重合,此時(shí)∠DBC=

2)在(1)的條件下,將DEB沿直線(xiàn)BD折疊,點(diǎn)E恰好落在線(xiàn)段DC上的點(diǎn)E處,如圖3,此時(shí)∠EBC= ;

3)若另取一張等腰三角形紙片ABC,AB=AC,沿直線(xiàn)DE折疊(點(diǎn)D,E分別為折痕與直線(xiàn)AC,AB的交點(diǎn)),使得點(diǎn)A與點(diǎn)B重合,再將所得圖形沿直線(xiàn)BD折疊,使得E落在點(diǎn)E的位置,直線(xiàn)BE與直線(xiàn)AC交于點(diǎn)M.設(shè)∠BAC=m°m90°)畫(huà)出折疊后的圖形,并直接寫(xiě)出對(duì)應(yīng)的∠MBC的大小.(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(k>0,x>0)的圖象經(jīng)過(guò)菱形OACD的頂點(diǎn)D和邊AC的中點(diǎn)E,若菱形OACD的邊長(zhǎng)為3,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線(xiàn)l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線(xiàn)l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線(xiàn)的解析式;

(2)點(diǎn)D在拋物線(xiàn)上,DEy軸交直線(xiàn)l于點(diǎn)E,點(diǎn)F在直線(xiàn)l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線(xiàn)上,那么我們就稱(chēng)這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△AEC△DFB中,∠E∠F,點(diǎn)AB,CD在同一直線(xiàn)上,有如下三個(gè)關(guān)系式:①AE∥DF②ABCD,③CEBF.

(1)請(qǐng)用其中兩個(gè)關(guān)系式作為條件,另一個(gè)作為結(jié)論,寫(xiě)出你認(rèn)為正確的所有命題(用序號(hào)寫(xiě)出命題書(shū)寫(xiě)形式:如果,那么”);

(2)選擇(1)中你寫(xiě)出的一個(gè)命題,說(shuō)明它正確的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ACB=90°,AC=BCBECE,ADCEAD=4,BE=1.

1)求證:△ADC≌△CEB;

2)求的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一塊直角三角尺形狀的木板余料,木工師傅要在此余料上鋸出一塊圓形的木板制作凳面,要想使鋸出的凳面的面積最大.

(1)請(qǐng)你試著用直尺和圓規(guī)畫(huà)出此圓(要求尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法).

(2)若此Rt△ABC的直角邊分別為30cm40cm,試求此圓凳面的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是一個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系內(nèi),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(1,1),C(3,1).

(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1;

(2)畫(huà)出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;

(3)在(2)的條件下,求線(xiàn)段BC掃過(guò)的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠B80°,∠C40°,

1)尺規(guī)作圖:作AC的垂直平分線(xiàn),交AC于點(diǎn)D,交BC于點(diǎn)E;

2)連接AE,求證:ABAE.

查看答案和解析>>

同步練習(xí)冊(cè)答案