(1)已知,如圖1,△ABC的周長為l,面積為S,其內(nèi)切圓圓心為0,半徑為r,求證:;
(2)已知,如圖2,△ABC中,A、B、C三點(diǎn)的坐標(biāo)分別為A(-3,O)、B(3,0)、C(0,4).若△ABC內(nèi)心為D.求點(diǎn)D坐標(biāo);
(3)與三角形的一邊和其他兩邊的延長線相切的圓,叫旁切圓,圓心叫旁心.請求出條件(2)中的△ABC位于第一象限的旁心的坐標(biāo).

【答案】分析:(1)連接0A、OB、OC,設(shè)ABC的三邊分別為a、b、c,根據(jù):S=S△OAC+S△OBC+S△OAB即可證得;
(2)首先求得內(nèi)切圓的半徑,即可確定D的坐標(biāo);
(3)設(shè)∠B和∠C的外角平分線交于點(diǎn)P,則點(diǎn)P為旁心,過點(diǎn)P分別為作PE⊥x軸于E,PF⊥CB于F,則PF=PE=OC=4,在Rt△PFC中,利用三角函數(shù)即可求解.
解答:證明:連接0A、OB、OC,設(shè)AB、CA,BC的三邊分別為a、b、c,


則:S=S△OAC+S△OBC+S△OAB(1分)
=
=
(3分)

(2)∵A(-3,O),B(3,O),C(0,4)
∴AB=6,AC=BC=5(4分)(5分)
由條件(1)得:,得(6分)

(3)方法一:設(shè)∠B和∠C的外角平分線交于點(diǎn)P,則點(diǎn)P為旁心(7分)
∵∠MCB=2∠PCB=2∠CBA
∴∠PCB=∠CBA
∴CP∥AB(8分)
過點(diǎn)P分別為作PE⊥x軸于E,PF⊥CB于F,則PF=PE=OC=4(10分)
在Rt△PFC中,
∴P(5,4)(12分)
方法二:過點(diǎn)B作∠B的外角平分線交AD的延長線于點(diǎn)P,則點(diǎn)P為旁心,(7分)
過點(diǎn)P作PE⊥x軸于E,連接BD,令P(a,b)
由∠1=∠2,∠3=∠4得:
∠1+∠4=∠2+∠3=90°
∴Rt△DOB∽R(shí)t△BEP,∴
化簡得:b=2a-6(1)(9分)
由Rt△AOD∽R(shí)t△AEP得:
化簡得:2b=a+3(2)(11分)
聯(lián)立(1)、(2)解得a=5,b=4,∴P(5,4)
點(diǎn)評(píng):本題主要考查了三角形的內(nèi)心與外接圓,解這類題一般都利用過內(nèi)心向正三角形的一邊作垂線,則正三角形的半徑、內(nèi)切圓半徑和正三角形邊長的一半構(gòu)成一個(gè)直角三角形,解這個(gè)直角三角形,可求出相關(guān)的邊長或角的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2007年5月17日我市榮獲“國家衛(wèi)生城市稱號(hào)”.在“創(chuàng)衛(wèi)”過程中,要在東西方向M、N兩地之間修建一條道路.已知:如圖C點(diǎn)周圍180m范圍內(nèi)為文物保護(hù)區(qū),在MN上點(diǎn)A處測得C在A的北偏東60°方向上,從A向東走500m到達(dá)B處精英家教網(wǎng),測得C在B的北偏西45°方向上.
(1)NM是否穿過文物保護(hù)區(qū)?為什么?(參考數(shù)據(jù):
3
≈1.732)
(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工作需要多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、已知,如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(2,1),分別以A、B為圓心的圓與x軸相切,則圖中兩個(gè)陰影部分面積的和為
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,∠1=∠2,
 
.求證:AB=AC.
(1)在橫線上添加一個(gè)使命題的結(jié)論成立的條件;
(2)寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為
AD邊上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對角線AC相切于點(diǎn)F,過P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1位置時(shí),直線L恰好經(jīng)過點(diǎn)B,此時(shí)直線的解析式是y=2x+1,
(Ⅰ)求BC、AP1的長;
(Ⅱ)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫出自變量m的取值范圍;
(Ⅲ)以點(diǎn)E為圓心作⊙E與x軸相切,探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=-
3
3
x2-
2
3
3
x+
3
的圖象與x軸分別交于A,B兩點(diǎn),與y軸交精英家教網(wǎng)于C點(diǎn),⊙M經(jīng)過原點(diǎn)O及點(diǎn)A、C,點(diǎn)D是劣弧
OA
上一動(dòng)點(diǎn)(D點(diǎn)與A、O不重合).
(1)求拋物線的頂點(diǎn)E的坐標(biāo);
(2)求⊙M的面積;
(3)連CD交AO于點(diǎn)F,延長CD至G,使FG=2,試探究,當(dāng)點(diǎn)D運(yùn)動(dòng)到何處時(shí),直線GA與⊙M相切,并請說明理由.

查看答案和解析>>

同步練習(xí)冊答案